Minghao Wang, Mehdi Stiti, Hadrien Chaynes, Guillaume Castanet
{"title":"探索分析汽化双组分液滴组成的荧光寿命势","authors":"Minghao Wang, Mehdi Stiti, Hadrien Chaynes, Guillaume Castanet","doi":"10.1007/s00348-025-04108-8","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting droplet evaporation is particularly complex when the liquid phase consists of multiple components. To date, only a limited number of physical optical phenomena have been used to non-intrusively measure the composition of droplets. Laser-induced fluorescence is a promising approach, as the emission and absorption of certain fluorescent dyes are known to depend on solvent polarity, viscosity, and, more generally, the chemical environment. However, a challenge is that fluorescence signal intensity is generally sensitive to both temperature and composition. This study investigates fluorescence lifetime measurements as a robust alternative. We demonstrate that, with a well-chosen fluorescent dye, it is possible to measure the composition of bicomponent droplets using a single dye and a single detection band, with minimal constraint on detection band selection, and without ambiguity due to temperature variations. To validate the technique, it is applied to acoustically levitated droplets across several mixtures that exhibit markedly different behaviors.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-04108-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring fluorescence lifetime potential for analyzing the composition of vaporizing bicomponent droplets\",\"authors\":\"Minghao Wang, Mehdi Stiti, Hadrien Chaynes, Guillaume Castanet\",\"doi\":\"10.1007/s00348-025-04108-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting droplet evaporation is particularly complex when the liquid phase consists of multiple components. To date, only a limited number of physical optical phenomena have been used to non-intrusively measure the composition of droplets. Laser-induced fluorescence is a promising approach, as the emission and absorption of certain fluorescent dyes are known to depend on solvent polarity, viscosity, and, more generally, the chemical environment. However, a challenge is that fluorescence signal intensity is generally sensitive to both temperature and composition. This study investigates fluorescence lifetime measurements as a robust alternative. We demonstrate that, with a well-chosen fluorescent dye, it is possible to measure the composition of bicomponent droplets using a single dye and a single detection band, with minimal constraint on detection band selection, and without ambiguity due to temperature variations. To validate the technique, it is applied to acoustically levitated droplets across several mixtures that exhibit markedly different behaviors.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 10\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-025-04108-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-04108-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04108-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Exploring fluorescence lifetime potential for analyzing the composition of vaporizing bicomponent droplets
Predicting droplet evaporation is particularly complex when the liquid phase consists of multiple components. To date, only a limited number of physical optical phenomena have been used to non-intrusively measure the composition of droplets. Laser-induced fluorescence is a promising approach, as the emission and absorption of certain fluorescent dyes are known to depend on solvent polarity, viscosity, and, more generally, the chemical environment. However, a challenge is that fluorescence signal intensity is generally sensitive to both temperature and composition. This study investigates fluorescence lifetime measurements as a robust alternative. We demonstrate that, with a well-chosen fluorescent dye, it is possible to measure the composition of bicomponent droplets using a single dye and a single detection band, with minimal constraint on detection band selection, and without ambiguity due to temperature variations. To validate the technique, it is applied to acoustically levitated droplets across several mixtures that exhibit markedly different behaviors.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.