Saša Laloš, Siniša Bikić, Snežana Papović, Milivoj Radojčin, Ivan Pavkov, Rafat Al Afif, Christian Schröder, Milan Vraneš
{"title":"纳米颗粒浓度对纳米流体自由射流冲击静止障碍物所产生力的影响,重点研究基于离子液体的纳米流体","authors":"Saša Laloš, Siniša Bikić, Snežana Papović, Milivoj Radojčin, Ivan Pavkov, Rafat Al Afif, Christian Schröder, Milan Vraneš","doi":"10.1007/s10765-025-03642-1","DOIUrl":null,"url":null,"abstract":"<div><p>Nanofluids, colloidal suspensions of nanoparticles in a base fluid, have garnered significant research interest over the past two decades due to their potential as efficient heat transfer fluids in heat exchangers. Particularly interesting are nanofluids with nowadays very popular ionic liquids as base fluids. Understanding the behavior of nanofluids under forced convection in these systems is crucial, yet many studies have overlooked the impact on other system components. Our study focuses on the load exerted on system components by nanofluids. Specifically, we examined how varying nanoparticle concentrations influence the force exerted by the free jet flow of nanofluids on stationary obstacles. This aspect is critical as increased nanoparticle concentration generally leads to higher fluid density, potentially increasing the load on the system parts. Our findings indicate a correlation between nanoparticle concentration and the force exerted by the nanofluid's free jet flow on stationary obstacles. As the density of the nanofluid increases with higher nanoparticle concentration, so does the force exerted, confirming that the suspension of nanoparticles elevates the burden on system components. For illustrative purposes, at a temperature of 303.15 K and a nanoparticle mass concentration of 2.5 wt% in the Al<sub>2</sub>O<sub>3</sub>/[C<sub>4</sub>mim][NTf<sub>2</sub>] nanofluid, the relative increase in the force exerted by the free nanofluid jet on the stationary obstacle was approximately 5.7%. Further research into nanofluids' broader impacts is essential. Understanding these dynamics is crucial for optimizing their applications. Continued investigation into their mechanical and thermophysical effects is recommended to ensure efficient and safe integration into future technologies.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Nanoparticle Concentration on the Force Generated by a Nanofluid Free Jet Impacting a Stationary Obstacle, with Emphasis on Ionic Liquid-Based Nanofluids\",\"authors\":\"Saša Laloš, Siniša Bikić, Snežana Papović, Milivoj Radojčin, Ivan Pavkov, Rafat Al Afif, Christian Schröder, Milan Vraneš\",\"doi\":\"10.1007/s10765-025-03642-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanofluids, colloidal suspensions of nanoparticles in a base fluid, have garnered significant research interest over the past two decades due to their potential as efficient heat transfer fluids in heat exchangers. Particularly interesting are nanofluids with nowadays very popular ionic liquids as base fluids. Understanding the behavior of nanofluids under forced convection in these systems is crucial, yet many studies have overlooked the impact on other system components. Our study focuses on the load exerted on system components by nanofluids. Specifically, we examined how varying nanoparticle concentrations influence the force exerted by the free jet flow of nanofluids on stationary obstacles. This aspect is critical as increased nanoparticle concentration generally leads to higher fluid density, potentially increasing the load on the system parts. Our findings indicate a correlation between nanoparticle concentration and the force exerted by the nanofluid's free jet flow on stationary obstacles. As the density of the nanofluid increases with higher nanoparticle concentration, so does the force exerted, confirming that the suspension of nanoparticles elevates the burden on system components. For illustrative purposes, at a temperature of 303.15 K and a nanoparticle mass concentration of 2.5 wt% in the Al<sub>2</sub>O<sub>3</sub>/[C<sub>4</sub>mim][NTf<sub>2</sub>] nanofluid, the relative increase in the force exerted by the free nanofluid jet on the stationary obstacle was approximately 5.7%. Further research into nanofluids' broader impacts is essential. Understanding these dynamics is crucial for optimizing their applications. Continued investigation into their mechanical and thermophysical effects is recommended to ensure efficient and safe integration into future technologies.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-025-03642-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03642-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of Nanoparticle Concentration on the Force Generated by a Nanofluid Free Jet Impacting a Stationary Obstacle, with Emphasis on Ionic Liquid-Based Nanofluids
Nanofluids, colloidal suspensions of nanoparticles in a base fluid, have garnered significant research interest over the past two decades due to their potential as efficient heat transfer fluids in heat exchangers. Particularly interesting are nanofluids with nowadays very popular ionic liquids as base fluids. Understanding the behavior of nanofluids under forced convection in these systems is crucial, yet many studies have overlooked the impact on other system components. Our study focuses on the load exerted on system components by nanofluids. Specifically, we examined how varying nanoparticle concentrations influence the force exerted by the free jet flow of nanofluids on stationary obstacles. This aspect is critical as increased nanoparticle concentration generally leads to higher fluid density, potentially increasing the load on the system parts. Our findings indicate a correlation between nanoparticle concentration and the force exerted by the nanofluid's free jet flow on stationary obstacles. As the density of the nanofluid increases with higher nanoparticle concentration, so does the force exerted, confirming that the suspension of nanoparticles elevates the burden on system components. For illustrative purposes, at a temperature of 303.15 K and a nanoparticle mass concentration of 2.5 wt% in the Al2O3/[C4mim][NTf2] nanofluid, the relative increase in the force exerted by the free nanofluid jet on the stationary obstacle was approximately 5.7%. Further research into nanofluids' broader impacts is essential. Understanding these dynamics is crucial for optimizing their applications. Continued investigation into their mechanical and thermophysical effects is recommended to ensure efficient and safe integration into future technologies.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.