动态荧光成像揭示了催化裂化催化剂在优化合成过程中粒径与酸可及性的权衡

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lei Yu, Lei Zhang, Hongchang Duan, Qin Tan, Meihua Zhang, Cailin Chen, Huan Wang, Huimin Guan, Yucai Qin, Lijuan Song, Xionghou Gao
{"title":"动态荧光成像揭示了催化裂化催化剂在优化合成过程中粒径与酸可及性的权衡","authors":"Lei Yu,&nbsp;Lei Zhang,&nbsp;Hongchang Duan,&nbsp;Qin Tan,&nbsp;Meihua Zhang,&nbsp;Cailin Chen,&nbsp;Huan Wang,&nbsp;Huimin Guan,&nbsp;Yucai Qin,&nbsp;Lijuan Song,&nbsp;Xionghou Gao","doi":"10.1007/s10853-025-11282-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the synthesis of fluid catalytic cracking (FCC) catalysts, particle size is a critical factor governing acid site accessibility. This study takes different sieve-sized catalysts CAT-1 to CAT-6 as the research objects and combines conventional characterization techniques (e.g., SEM, XRD, N₂ adsorption–desorption, NH₃-TPD, Py-FTIR) with spatiotemporally resolved fluorescence imaging to systematically elucidate the mechanistic link between catalyst particle size and acid site accessibility. The results demonstrate that smaller catalyst particles (e.g., CAT-1: 10–20 μm), characterized by abundant submicron pore structures (0–0.2 μm), achieve complete (100%) acid site accessibility and superior spatial utilization efficiency within markedly shorter timeframes, significantly enhancing mass transfer performance. In contrast, larger particles (e.g., CAT-6: 120–180 μm) exhibit diminished catalytic activity due to mass transfer limitations imposed by elongated diffusion pathways and inadequate submicron pore structures. These findings provide a pivotal foundation for optimizing particle size design in industrial FCC catalyst synthesis, effectively balancing acid accessibility with particle dimensions to maximize overall catalytic efficiency.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 35","pages":"15724 - 15736"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic fluorescence imaging deciphers the particle size-acid accessibility trade-off in FCC catalysts toward optimized synthesis\",\"authors\":\"Lei Yu,&nbsp;Lei Zhang,&nbsp;Hongchang Duan,&nbsp;Qin Tan,&nbsp;Meihua Zhang,&nbsp;Cailin Chen,&nbsp;Huan Wang,&nbsp;Huimin Guan,&nbsp;Yucai Qin,&nbsp;Lijuan Song,&nbsp;Xionghou Gao\",\"doi\":\"10.1007/s10853-025-11282-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the synthesis of fluid catalytic cracking (FCC) catalysts, particle size is a critical factor governing acid site accessibility. This study takes different sieve-sized catalysts CAT-1 to CAT-6 as the research objects and combines conventional characterization techniques (e.g., SEM, XRD, N₂ adsorption–desorption, NH₃-TPD, Py-FTIR) with spatiotemporally resolved fluorescence imaging to systematically elucidate the mechanistic link between catalyst particle size and acid site accessibility. The results demonstrate that smaller catalyst particles (e.g., CAT-1: 10–20 μm), characterized by abundant submicron pore structures (0–0.2 μm), achieve complete (100%) acid site accessibility and superior spatial utilization efficiency within markedly shorter timeframes, significantly enhancing mass transfer performance. In contrast, larger particles (e.g., CAT-6: 120–180 μm) exhibit diminished catalytic activity due to mass transfer limitations imposed by elongated diffusion pathways and inadequate submicron pore structures. These findings provide a pivotal foundation for optimizing particle size design in industrial FCC catalyst synthesis, effectively balancing acid accessibility with particle dimensions to maximize overall catalytic efficiency.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 35\",\"pages\":\"15724 - 15736\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11282-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11282-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在催化裂化(FCC)催化剂的合成中,催化剂的粒径是影响酸位可及性的关键因素。本研究以不同筛级催化剂CAT-1 ~ CAT-6为研究对象,结合常规表征技术(SEM、XRD、N₂吸附-脱附、NH₃-TPD、Py-FTIR)和时空分辨荧光成像技术,系统阐明催化剂粒径与酸位可达性之间的机理联系。结果表明,较小的催化剂颗粒(如CAT-1: 10-20 μm)具有丰富的亚微米孔结构(0-0.2 μm),在较短的时间内实现了完全(100%)的酸位点可达性和优越的空间利用效率,显著提高了传质性能。相比之下,较大的颗粒(例如CAT-6: 120-180 μm)由于扩散路径延长和亚微米孔结构不充分造成传质限制,其催化活性降低。这些发现为优化工业催化裂化催化剂合成中的粒径设计提供了关键基础,有效地平衡酸可及性和粒径,以最大限度地提高整体催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic fluorescence imaging deciphers the particle size-acid accessibility trade-off in FCC catalysts toward optimized synthesis

In the synthesis of fluid catalytic cracking (FCC) catalysts, particle size is a critical factor governing acid site accessibility. This study takes different sieve-sized catalysts CAT-1 to CAT-6 as the research objects and combines conventional characterization techniques (e.g., SEM, XRD, N₂ adsorption–desorption, NH₃-TPD, Py-FTIR) with spatiotemporally resolved fluorescence imaging to systematically elucidate the mechanistic link between catalyst particle size and acid site accessibility. The results demonstrate that smaller catalyst particles (e.g., CAT-1: 10–20 μm), characterized by abundant submicron pore structures (0–0.2 μm), achieve complete (100%) acid site accessibility and superior spatial utilization efficiency within markedly shorter timeframes, significantly enhancing mass transfer performance. In contrast, larger particles (e.g., CAT-6: 120–180 μm) exhibit diminished catalytic activity due to mass transfer limitations imposed by elongated diffusion pathways and inadequate submicron pore structures. These findings provide a pivotal foundation for optimizing particle size design in industrial FCC catalyst synthesis, effectively balancing acid accessibility with particle dimensions to maximize overall catalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信