{"title":"阶梯式超声辐射器的研究","authors":"N. Li, X. P. He, Y. Yuan","doi":"10.1134/S106377102460270X","DOIUrl":null,"url":null,"abstract":"<p>Sound field and radiation impedance are crucial acoustic performance parameters. Sound field calculation concerns sound propagation from a source and pertains to practical application problems within a specific environment. In contrast, radiation impedance is associated with the matching of the radiating elements with a circuit. Free boundary stepped radiators with high directional properties have significant application potential in the field of high-power gas medium ultrasonics. This study proposes a simulation for the computational estimation of the radiation field and impedance of stepped radiators based on the Rayleigh method. The axial sound pressure and directivity of the rectangular stepped radiator are calculated theoretically. At the same time, the radiation impedance is calculated. The results of the sound field test and radiation impedance calculations verified the validity of the proposed method. Thus, a practical and efficient approach to the analysis of the acoustic performance of arbitrary sound radiator was realized. The proposed method offers valuable insights and addresses a crucial gap in understanding these parameters for diverse radiator configurations<i>.</i></p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"71 3","pages":"312 - 325"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S106377102460270X.pdf","citationCount":"0","resultStr":"{\"title\":\"Research of a Stepped Ultrasonic Radiator\",\"authors\":\"N. Li, X. P. He, Y. Yuan\",\"doi\":\"10.1134/S106377102460270X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sound field and radiation impedance are crucial acoustic performance parameters. Sound field calculation concerns sound propagation from a source and pertains to practical application problems within a specific environment. In contrast, radiation impedance is associated with the matching of the radiating elements with a circuit. Free boundary stepped radiators with high directional properties have significant application potential in the field of high-power gas medium ultrasonics. This study proposes a simulation for the computational estimation of the radiation field and impedance of stepped radiators based on the Rayleigh method. The axial sound pressure and directivity of the rectangular stepped radiator are calculated theoretically. At the same time, the radiation impedance is calculated. The results of the sound field test and radiation impedance calculations verified the validity of the proposed method. Thus, a practical and efficient approach to the analysis of the acoustic performance of arbitrary sound radiator was realized. The proposed method offers valuable insights and addresses a crucial gap in understanding these parameters for diverse radiator configurations<i>.</i></p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"71 3\",\"pages\":\"312 - 325\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S106377102460270X.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106377102460270X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106377102460270X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Sound field and radiation impedance are crucial acoustic performance parameters. Sound field calculation concerns sound propagation from a source and pertains to practical application problems within a specific environment. In contrast, radiation impedance is associated with the matching of the radiating elements with a circuit. Free boundary stepped radiators with high directional properties have significant application potential in the field of high-power gas medium ultrasonics. This study proposes a simulation for the computational estimation of the radiation field and impedance of stepped radiators based on the Rayleigh method. The axial sound pressure and directivity of the rectangular stepped radiator are calculated theoretically. At the same time, the radiation impedance is calculated. The results of the sound field test and radiation impedance calculations verified the validity of the proposed method. Thus, a practical and efficient approach to the analysis of the acoustic performance of arbitrary sound radiator was realized. The proposed method offers valuable insights and addresses a crucial gap in understanding these parameters for diverse radiator configurations.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.