基于BEAST数据集和时间图卷积网络的桥梁评估多模态NDE数据分析

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Mozhgan Momtaz, Hoda Azari
{"title":"基于BEAST数据集和时间图卷积网络的桥梁评估多模态NDE数据分析","authors":"Mozhgan Momtaz,&nbsp;Hoda Azari","doi":"10.1007/s10921-025-01267-w","DOIUrl":null,"url":null,"abstract":"<div><p>Preserving aging bridges, which are vital to transportation networks, presents notable difficulties due to factors like intense usage, structural wear, and restricted maintenance resources. This research examines the deployment of Nondestructive Evaluation (NDE) techniques to optimize bridge maintenance strategies and maintain structural soundness. Over the course of infrastructure lifespans, vast amounts of NDE data are accumulated, yet processing and interpreting this information proves challenging due to intricate spatial and temporal interdependencies. In this study, we approach the problem as one of graph-based prediction, introducing two advanced methodologies to address it. The primary approach utilizes a Temporal Graph Convolution Network (TGCN), harnessing spatio-temporal patterns for predictive modeling. The secondary approach, a multi-modal TGCN, integrates data fusion techniques to combine diverse data sources for improved predictive accuracy. We evaluate the performance of these approaches using NDE data collected at Rutgers’ BEAST<sup>®</sup> facility that includes five NDE modalities and 14 consecutive time intervals for assessing bridge deck conditions, comparing the results against a baseline Spatio-Temporal Autoregressive (STAR) model. While the STAR model established foundational forecasts, the TGCN method achieved superior results by managing nonlinearities. The multi-modal TGCN further enhanced performance, demonstrating the advantages of leveraging data fusion to incorporate multiple data types within TGCN frameworks.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Modal NDE Data Analysis for Bridge Assessment Using the BEAST Dataset and Temporal Graph Convolution Networks\",\"authors\":\"Mozhgan Momtaz,&nbsp;Hoda Azari\",\"doi\":\"10.1007/s10921-025-01267-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Preserving aging bridges, which are vital to transportation networks, presents notable difficulties due to factors like intense usage, structural wear, and restricted maintenance resources. This research examines the deployment of Nondestructive Evaluation (NDE) techniques to optimize bridge maintenance strategies and maintain structural soundness. Over the course of infrastructure lifespans, vast amounts of NDE data are accumulated, yet processing and interpreting this information proves challenging due to intricate spatial and temporal interdependencies. In this study, we approach the problem as one of graph-based prediction, introducing two advanced methodologies to address it. The primary approach utilizes a Temporal Graph Convolution Network (TGCN), harnessing spatio-temporal patterns for predictive modeling. The secondary approach, a multi-modal TGCN, integrates data fusion techniques to combine diverse data sources for improved predictive accuracy. We evaluate the performance of these approaches using NDE data collected at Rutgers’ BEAST<sup>®</sup> facility that includes five NDE modalities and 14 consecutive time intervals for assessing bridge deck conditions, comparing the results against a baseline Spatio-Temporal Autoregressive (STAR) model. While the STAR model established foundational forecasts, the TGCN method achieved superior results by managing nonlinearities. The multi-modal TGCN further enhanced performance, demonstrating the advantages of leveraging data fusion to incorporate multiple data types within TGCN frameworks.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01267-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01267-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

老化桥梁对交通网络至关重要,但由于使用频繁、结构磨损和维护资源有限等因素,保护老化桥梁面临着显著的困难。本研究探讨了无损评估(NDE)技术的部署,以优化桥梁维护策略和保持结构的可靠性。在基础设施的使用寿命期间,积累了大量的NDE数据,但由于复杂的空间和时间相互依赖性,处理和解释这些信息具有挑战性。在本研究中,我们将这个问题作为基于图的预测之一,引入两种先进的方法来解决它。主要方法利用时序图卷积网络(TGCN),利用时空模式进行预测建模。第二种方法是多模态TGCN,它集成了数据融合技术,将不同的数据源结合起来,以提高预测精度。我们使用罗格斯大学BEAST设施收集的NDE数据来评估这些方法的性能,该数据包括五种NDE模式和14个连续的时间间隔,用于评估桥梁甲板状况,并将结果与基线时空自回归(STAR)模型进行比较。虽然STAR模型建立了基础预测,但TGCN方法通过管理非线性获得了更好的结果。多模态TGCN进一步提高了性能,展示了利用数据融合在TGCN框架内合并多种数据类型的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Modal NDE Data Analysis for Bridge Assessment Using the BEAST Dataset and Temporal Graph Convolution Networks

Preserving aging bridges, which are vital to transportation networks, presents notable difficulties due to factors like intense usage, structural wear, and restricted maintenance resources. This research examines the deployment of Nondestructive Evaluation (NDE) techniques to optimize bridge maintenance strategies and maintain structural soundness. Over the course of infrastructure lifespans, vast amounts of NDE data are accumulated, yet processing and interpreting this information proves challenging due to intricate spatial and temporal interdependencies. In this study, we approach the problem as one of graph-based prediction, introducing two advanced methodologies to address it. The primary approach utilizes a Temporal Graph Convolution Network (TGCN), harnessing spatio-temporal patterns for predictive modeling. The secondary approach, a multi-modal TGCN, integrates data fusion techniques to combine diverse data sources for improved predictive accuracy. We evaluate the performance of these approaches using NDE data collected at Rutgers’ BEAST® facility that includes five NDE modalities and 14 consecutive time intervals for assessing bridge deck conditions, comparing the results against a baseline Spatio-Temporal Autoregressive (STAR) model. While the STAR model established foundational forecasts, the TGCN method achieved superior results by managing nonlinearities. The multi-modal TGCN further enhanced performance, demonstrating the advantages of leveraging data fusion to incorporate multiple data types within TGCN frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信