设计稀土金属基Ce2S3@Ni3S2析氢和超级电容器应用的混合电极材料的协同作用:双重卓越

IF 4.9 3区 化学 Q2 POLYMER SCIENCE
Zeshan Ali Sandhu, Muhammad Danish, Umme Farwa, Muhammad Asam Raza, Ali Haider Bhalli, Aeysha Sultan, Norah Alwadai, Wissem Mnif
{"title":"设计稀土金属基Ce2S3@Ni3S2析氢和超级电容器应用的混合电极材料的协同作用:双重卓越","authors":"Zeshan Ali Sandhu,&nbsp;Muhammad Danish,&nbsp;Umme Farwa,&nbsp;Muhammad Asam Raza,&nbsp;Ali Haider Bhalli,&nbsp;Aeysha Sultan,&nbsp;Norah Alwadai,&nbsp;Wissem Mnif","doi":"10.1007/s10904-025-03650-6","DOIUrl":null,"url":null,"abstract":"<div><p>The enhancing need for efficient energy storage and conversion devices demonstrates the crucial need for electrode materials with dual excellence. Conversely, attaining simultaneous optimization of supercapcitor performance and hydrogen evolution reaction (HER) activity remains a challenge due to limitations of material. This study reported the synthesis of pure nickel sulfide (Ni<sub>3</sub>S<sub>2</sub>) and (3% and 5%) cerium-doped nickel sulfide (Ce<sub>2</sub>S<sub>3</sub>-doped Ni<sub>3</sub>S<sub>2</sub>) nanomaterials with micro-emulsion-mediated hydrothermal approach for dual-excellence in supercapcitor and hydrogen evolution reactions (HER). The synthesized materials were characterized via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The SEM analysis illustrated aggregated globular morphology of the prepared nanomaterials. The electrochemical performance confirmed exceptional pseudocapacitive behaviour and remarkable cyclic stability of the prepared Ce-doped Ni<sub>3</sub>S<sub>2</sub> materials. Cyclic voltammetry (CV) analysis displayed symmetrical behaviour, sustaining 89% stability at 3000th cycles. Similarly, galvanostatic charge-discharge (GCD) at performed at 1 A/g exposed capacitance values of 890 F/g, 978 F/g and 1106 F/g for pure Ni<sub>3</sub>S<sub>2</sub>, 5% Ce<sub>2</sub>S<sub>3</sub>-Ni<sub>3</sub>S<sub>2</sub> and 3% Ce<sub>2</sub>S<sub>3</sub>-Ni<sub>3</sub>S<sub>2</sub>. Additionally, energy densities were also determined about 31.15 Wh/kg, 38.71 Wh/kg, and 34.23 Wh/kg, for pure Ni<sub>3</sub>S<sub>2</sub>, 3% Ce-doped Ni<sub>3</sub>S<sub>2</sub> and 5% Ce-doped Ni<sub>3</sub>S<sub>2</sub> respectively. Interestingly, the 3% Ce-doped Ni<sub>3</sub>S<sub>2</sub> demonstrated superior cyclic stability (92% after 3000th cycles) and significant performance, illustrating its potential as a high-performance energy storage device. Moreover, the ideal concentration of cerium dopant was determined to be 3% in Ni<sub>3</sub>S<sub>2</sub> in HER study, exhibited an onset potential of 0.14 V, an over potential of 71 mV at a current density of 10 mAcm<sup>− 2</sup>, and a Tafel slope of 57 mVdec<sup>− 1</sup> in 2.0 M KOH, demonstrating the highest activity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"35 8","pages":"6221 - 6234"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design the Synergy of Rare Earth Metal Based Ce2S3@Ni3S2 Hybrid Electrode Materials for Hydrogen Evolution and Supercapacitor Application: Dual Excellence\",\"authors\":\"Zeshan Ali Sandhu,&nbsp;Muhammad Danish,&nbsp;Umme Farwa,&nbsp;Muhammad Asam Raza,&nbsp;Ali Haider Bhalli,&nbsp;Aeysha Sultan,&nbsp;Norah Alwadai,&nbsp;Wissem Mnif\",\"doi\":\"10.1007/s10904-025-03650-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The enhancing need for efficient energy storage and conversion devices demonstrates the crucial need for electrode materials with dual excellence. Conversely, attaining simultaneous optimization of supercapcitor performance and hydrogen evolution reaction (HER) activity remains a challenge due to limitations of material. This study reported the synthesis of pure nickel sulfide (Ni<sub>3</sub>S<sub>2</sub>) and (3% and 5%) cerium-doped nickel sulfide (Ce<sub>2</sub>S<sub>3</sub>-doped Ni<sub>3</sub>S<sub>2</sub>) nanomaterials with micro-emulsion-mediated hydrothermal approach for dual-excellence in supercapcitor and hydrogen evolution reactions (HER). The synthesized materials were characterized via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The SEM analysis illustrated aggregated globular morphology of the prepared nanomaterials. The electrochemical performance confirmed exceptional pseudocapacitive behaviour and remarkable cyclic stability of the prepared Ce-doped Ni<sub>3</sub>S<sub>2</sub> materials. Cyclic voltammetry (CV) analysis displayed symmetrical behaviour, sustaining 89% stability at 3000th cycles. Similarly, galvanostatic charge-discharge (GCD) at performed at 1 A/g exposed capacitance values of 890 F/g, 978 F/g and 1106 F/g for pure Ni<sub>3</sub>S<sub>2</sub>, 5% Ce<sub>2</sub>S<sub>3</sub>-Ni<sub>3</sub>S<sub>2</sub> and 3% Ce<sub>2</sub>S<sub>3</sub>-Ni<sub>3</sub>S<sub>2</sub>. Additionally, energy densities were also determined about 31.15 Wh/kg, 38.71 Wh/kg, and 34.23 Wh/kg, for pure Ni<sub>3</sub>S<sub>2</sub>, 3% Ce-doped Ni<sub>3</sub>S<sub>2</sub> and 5% Ce-doped Ni<sub>3</sub>S<sub>2</sub> respectively. Interestingly, the 3% Ce-doped Ni<sub>3</sub>S<sub>2</sub> demonstrated superior cyclic stability (92% after 3000th cycles) and significant performance, illustrating its potential as a high-performance energy storage device. Moreover, the ideal concentration of cerium dopant was determined to be 3% in Ni<sub>3</sub>S<sub>2</sub> in HER study, exhibited an onset potential of 0.14 V, an over potential of 71 mV at a current density of 10 mAcm<sup>− 2</sup>, and a Tafel slope of 57 mVdec<sup>− 1</sup> in 2.0 M KOH, demonstrating the highest activity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":639,\"journal\":{\"name\":\"Journal of Inorganic and Organometallic Polymers and Materials\",\"volume\":\"35 8\",\"pages\":\"6221 - 6234\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic and Organometallic Polymers and Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10904-025-03650-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10904-025-03650-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

对高效能量存储和转换装置的需求日益增加,表明对具有双重性能的电极材料的迫切需求。相反,由于材料的限制,实现超级电容器性能和析氢反应(HER)活性的同时优化仍然是一个挑战。本研究报道了采用微乳液介导水热法合成纯硫化镍(Ni3S2)和(3%和5%)掺铈硫化镍(ce2s3掺杂Ni3S2)纳米材料,在超级电容器和析氢反应(HER)中具有双优性能。通过紫外可见光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、x射线衍射(XRD)、能量色散x射线能谱(EDS)和扫描电镜(SEM)对合成材料进行了表征。SEM分析表明制备的纳米材料具有聚集的球状形貌。电化学性能证实了所制备的掺铈Ni3S2材料具有优异的赝电容性和良好的循环稳定性。循环伏安法(CV)分析显示出对称行为,在3000次循环时保持89%的稳定性。同样,在1 A/g下进行恒流充放电(GCD)时,纯Ni3S2、5% Ce2S3-Ni3S2和3% Ce2S3-Ni3S2的暴露电容值分别为890 F/g、978 F/g和1106 F/g。此外,还测定了纯Ni3S2、3% ce掺杂Ni3S2和5% ce掺杂Ni3S2的能量密度分别为31.15 Wh/kg、38.71 Wh/kg和34.23 Wh/kg。有趣的是,3% ce掺杂的Ni3S2表现出优异的循环稳定性(在3000次循环后达到92%)和显著的性能,表明其作为高性能储能器件的潜力。此外,在HER研究中,确定了理想的铈掺杂浓度为3%的Ni3S2,在电流密度为10 mAcm−2时的起始电位为0.14 V,过电位为71 mV,在2.0 M KOH下的Tafel斜率为57 mVdec−1,显示出最高的活性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design the Synergy of Rare Earth Metal Based Ce2S3@Ni3S2 Hybrid Electrode Materials for Hydrogen Evolution and Supercapacitor Application: Dual Excellence

Design the Synergy of Rare Earth Metal Based Ce2S3@Ni3S2 Hybrid Electrode Materials for Hydrogen Evolution and Supercapacitor Application: Dual Excellence

Design the Synergy of Rare Earth Metal Based Ce2S3@Ni3S2 Hybrid Electrode Materials for Hydrogen Evolution and Supercapacitor Application: Dual Excellence

The enhancing need for efficient energy storage and conversion devices demonstrates the crucial need for electrode materials with dual excellence. Conversely, attaining simultaneous optimization of supercapcitor performance and hydrogen evolution reaction (HER) activity remains a challenge due to limitations of material. This study reported the synthesis of pure nickel sulfide (Ni3S2) and (3% and 5%) cerium-doped nickel sulfide (Ce2S3-doped Ni3S2) nanomaterials with micro-emulsion-mediated hydrothermal approach for dual-excellence in supercapcitor and hydrogen evolution reactions (HER). The synthesized materials were characterized via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The SEM analysis illustrated aggregated globular morphology of the prepared nanomaterials. The electrochemical performance confirmed exceptional pseudocapacitive behaviour and remarkable cyclic stability of the prepared Ce-doped Ni3S2 materials. Cyclic voltammetry (CV) analysis displayed symmetrical behaviour, sustaining 89% stability at 3000th cycles. Similarly, galvanostatic charge-discharge (GCD) at performed at 1 A/g exposed capacitance values of 890 F/g, 978 F/g and 1106 F/g for pure Ni3S2, 5% Ce2S3-Ni3S2 and 3% Ce2S3-Ni3S2. Additionally, energy densities were also determined about 31.15 Wh/kg, 38.71 Wh/kg, and 34.23 Wh/kg, for pure Ni3S2, 3% Ce-doped Ni3S2 and 5% Ce-doped Ni3S2 respectively. Interestingly, the 3% Ce-doped Ni3S2 demonstrated superior cyclic stability (92% after 3000th cycles) and significant performance, illustrating its potential as a high-performance energy storage device. Moreover, the ideal concentration of cerium dopant was determined to be 3% in Ni3S2 in HER study, exhibited an onset potential of 0.14 V, an over potential of 71 mV at a current density of 10 mAcm− 2, and a Tafel slope of 57 mVdec− 1 in 2.0 M KOH, demonstrating the highest activity.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
7.50%
发文量
335
审稿时长
1.8 months
期刊介绍: Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信