基于分散时间同步的六元阵列分布式波束形成

IF 4.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Naim Shandi;Jason M. Merlo;Jeffrey A. Nanzer
{"title":"基于分散时间同步的六元阵列分布式波束形成","authors":"Naim Shandi;Jason M. Merlo;Jeffrey A. Nanzer","doi":"10.1109/JMW.2025.3601036","DOIUrl":null,"url":null,"abstract":"We demonstrate distributed beamforming and beamsteering from a six-node distributed phased array using fully wireless coordination with decentralized time synchronization. In wireless applications such as distributed beamforming, high-accuracy time synchronization across the array is crucial for high coherent gain. The decentralized time synchronization method employed is based on the average consensus algorithm and the two-way time transfer method presented in our previous work, which achieved picosecond-level time synchronization with a cabled frequency reference. The system presented in this paper utilizes a centralized wireless frequency transfer method to achieve wireless frequency syntonization in a fully wireless coordination and a distributed computing system architecture. We experimentally evaluate system performance through beamforming and beamsteering to a receiver 16.3 m away from the six-node non-uniformly distributed antenna array, achieving an average coherent gain of 98% of the ideal gain at a carrier frequency of 1.05 GHz. The average time synchronization accuracy achieved was less than 36 ps.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 5","pages":"1094-1106"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11154106","citationCount":"0","resultStr":"{\"title\":\"Distributed Beamforming Using Decentralized Time Synchronization in a Six-Element Array\",\"authors\":\"Naim Shandi;Jason M. Merlo;Jeffrey A. Nanzer\",\"doi\":\"10.1109/JMW.2025.3601036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate distributed beamforming and beamsteering from a six-node distributed phased array using fully wireless coordination with decentralized time synchronization. In wireless applications such as distributed beamforming, high-accuracy time synchronization across the array is crucial for high coherent gain. The decentralized time synchronization method employed is based on the average consensus algorithm and the two-way time transfer method presented in our previous work, which achieved picosecond-level time synchronization with a cabled frequency reference. The system presented in this paper utilizes a centralized wireless frequency transfer method to achieve wireless frequency syntonization in a fully wireless coordination and a distributed computing system architecture. We experimentally evaluate system performance through beamforming and beamsteering to a receiver 16.3 m away from the six-node non-uniformly distributed antenna array, achieving an average coherent gain of 98% of the ideal gain at a carrier frequency of 1.05 GHz. The average time synchronization accuracy achieved was less than 36 ps.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 5\",\"pages\":\"1094-1106\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11154106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11154106/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11154106/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们演示了分布式波束形成和波束转向从一个六节点分布式相控阵使用完全无线协调分散时间同步。在分布式波束形成等无线应用中,跨阵列的高精度时间同步对于获得高相干增益至关重要。所采用的分散时间同步方法是基于平均共识算法和我们之前工作中提出的双向时间传输方法,在有线频率参考下实现皮秒级时间同步。本系统采用集中式无线频率传输方法,在全无线协调和分布式计算系统架构下实现无线频率同步。我们通过对距离六节点非均匀分布天线阵列16.3 m的接收器进行波束形成和波束导向实验来评估系统性能,在1.05 GHz载波频率下获得了理想增益的98%的平均相干增益。实现的平均时间同步精度小于36ps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Beamforming Using Decentralized Time Synchronization in a Six-Element Array
We demonstrate distributed beamforming and beamsteering from a six-node distributed phased array using fully wireless coordination with decentralized time synchronization. In wireless applications such as distributed beamforming, high-accuracy time synchronization across the array is crucial for high coherent gain. The decentralized time synchronization method employed is based on the average consensus algorithm and the two-way time transfer method presented in our previous work, which achieved picosecond-level time synchronization with a cabled frequency reference. The system presented in this paper utilizes a centralized wireless frequency transfer method to achieve wireless frequency syntonization in a fully wireless coordination and a distributed computing system architecture. We experimentally evaluate system performance through beamforming and beamsteering to a receiver 16.3 m away from the six-node non-uniformly distributed antenna array, achieving an average coherent gain of 98% of the ideal gain at a carrier frequency of 1.05 GHz. The average time synchronization accuracy achieved was less than 36 ps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信