Azam Al-Rawachy;Alexander Baddeley;Abdalla Eblabla;Dragan Gecan;Aamir Sheikh;Aleksander Bogusz;Roberto Quaglia;Paul J. Tasker
{"title":"自动加的夫模型复杂性识别和参数提取从测量定制a -拉数据","authors":"Azam Al-Rawachy;Alexander Baddeley;Abdalla Eblabla;Dragan Gecan;Aamir Sheikh;Aleksander Bogusz;Roberto Quaglia;Paul J. Tasker","doi":"10.1109/JMW.2025.3600995","DOIUrl":null,"url":null,"abstract":"This paper presents a novel experimental technique for automatically identifying the complexity and coefficients of a Cardiff behavioral model of a microwave transistor using a conventional, narrowband active load-pull system. The method ensures the accuracy of the extracted model while eliminating the need for expert human judgment/intervention. The paper details the solutions adopted to overcome the technical challenges of implementing A-pull using a narrowband vector network analyzer-based load-pull system. Specifically, to ensure that the A-pull grid is achieved quickly and accurately, and that it covers a meaningful and safe operating space for the device under test. A gallium nitride (GaN) microwave transistor is characterized and modeled to demonstrate the technique at 2.45 GHz. Results clearly show how the model complexity is automatically identified and accurate coefficients extracted. In addition, the paper demonstrates how to use this approach to allow for a systematic reduction in the number of measured load points without compromising model accuracy, further improving the process’s speed.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 5","pages":"1150-1161"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11154107","citationCount":"0","resultStr":"{\"title\":\"Automated Cardiff Model Complexity Identification and Parameters Extraction From Measured Tailored A-Pull Data\",\"authors\":\"Azam Al-Rawachy;Alexander Baddeley;Abdalla Eblabla;Dragan Gecan;Aamir Sheikh;Aleksander Bogusz;Roberto Quaglia;Paul J. Tasker\",\"doi\":\"10.1109/JMW.2025.3600995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel experimental technique for automatically identifying the complexity and coefficients of a Cardiff behavioral model of a microwave transistor using a conventional, narrowband active load-pull system. The method ensures the accuracy of the extracted model while eliminating the need for expert human judgment/intervention. The paper details the solutions adopted to overcome the technical challenges of implementing A-pull using a narrowband vector network analyzer-based load-pull system. Specifically, to ensure that the A-pull grid is achieved quickly and accurately, and that it covers a meaningful and safe operating space for the device under test. A gallium nitride (GaN) microwave transistor is characterized and modeled to demonstrate the technique at 2.45 GHz. Results clearly show how the model complexity is automatically identified and accurate coefficients extracted. In addition, the paper demonstrates how to use this approach to allow for a systematic reduction in the number of measured load points without compromising model accuracy, further improving the process’s speed.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 5\",\"pages\":\"1150-1161\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11154107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11154107/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11154107/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Automated Cardiff Model Complexity Identification and Parameters Extraction From Measured Tailored A-Pull Data
This paper presents a novel experimental technique for automatically identifying the complexity and coefficients of a Cardiff behavioral model of a microwave transistor using a conventional, narrowband active load-pull system. The method ensures the accuracy of the extracted model while eliminating the need for expert human judgment/intervention. The paper details the solutions adopted to overcome the technical challenges of implementing A-pull using a narrowband vector network analyzer-based load-pull system. Specifically, to ensure that the A-pull grid is achieved quickly and accurately, and that it covers a meaningful and safe operating space for the device under test. A gallium nitride (GaN) microwave transistor is characterized and modeled to demonstrate the technique at 2.45 GHz. Results clearly show how the model complexity is automatically identified and accurate coefficients extracted. In addition, the paper demonstrates how to use this approach to allow for a systematic reduction in the number of measured load points without compromising model accuracy, further improving the process’s speed.