基于多元灵敏度分析和深度学习的Mie粒子结构光的光捕获力探索

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Jiahao Yu, Mi Feng, Caixia Guo, Baosheng Li, Xiaofang Lu, Zitao Wei, Yi Liang
{"title":"基于多元灵敏度分析和深度学习的Mie粒子结构光的光捕获力探索","authors":"Jiahao Yu,&nbsp;Mi Feng,&nbsp;Caixia Guo,&nbsp;Baosheng Li,&nbsp;Xiaofang Lu,&nbsp;Zitao Wei,&nbsp;Yi Liang","doi":"10.1016/j.optcom.2025.132383","DOIUrl":null,"url":null,"abstract":"<div><div>Optical tweezers play a critical role in exploring light–matter interactions. However, characterization of optical forces – especially for structured light fields such as circular Airy beams – remains computationally intensive under conventional numerical frameworks like the Generalized Lorenz-Mie Theory (GLMT). To overcome this limitation, we present an enhanced hybrid deep learning framework that integrates deep neural networks, GLMT simulations, and multivariate sensitivity analysis for rapid and precise prediction of optical trapping forces acting on Mie particles. Our model is trained on 5000 GLMT-calculated datasets and achieves 97.9% prediction accuracy while reducing inference latency to just 32 ms—representing a <span><math><mrow><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>-fold acceleration over traditional methods. By incorporating Sobol global sensitivity analysis, we identify the dominant beam parameters influencing optical force responses and guide the design of a fully connected neural network that achieves a mean squared error (MSE) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>04</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and a relative prediction error below 1.2% for all validation data. These results demonstrate that spatial distribution variations contribute most significantly to optical force modulation and deep learning accelerates optical capability exploration, providing a deeper understanding on the optical trapping force of structured light and paving a way to quick intelligent design and optimization of structured-light-based optical tweezers.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"596 ","pages":"Article 132383"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical trapping force exploration on Mie particles for structured light via multivariate sensitivity analysis and deep learning\",\"authors\":\"Jiahao Yu,&nbsp;Mi Feng,&nbsp;Caixia Guo,&nbsp;Baosheng Li,&nbsp;Xiaofang Lu,&nbsp;Zitao Wei,&nbsp;Yi Liang\",\"doi\":\"10.1016/j.optcom.2025.132383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optical tweezers play a critical role in exploring light–matter interactions. However, characterization of optical forces – especially for structured light fields such as circular Airy beams – remains computationally intensive under conventional numerical frameworks like the Generalized Lorenz-Mie Theory (GLMT). To overcome this limitation, we present an enhanced hybrid deep learning framework that integrates deep neural networks, GLMT simulations, and multivariate sensitivity analysis for rapid and precise prediction of optical trapping forces acting on Mie particles. Our model is trained on 5000 GLMT-calculated datasets and achieves 97.9% prediction accuracy while reducing inference latency to just 32 ms—representing a <span><math><mrow><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>-fold acceleration over traditional methods. By incorporating Sobol global sensitivity analysis, we identify the dominant beam parameters influencing optical force responses and guide the design of a fully connected neural network that achieves a mean squared error (MSE) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>04</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and a relative prediction error below 1.2% for all validation data. These results demonstrate that spatial distribution variations contribute most significantly to optical force modulation and deep learning accelerates optical capability exploration, providing a deeper understanding on the optical trapping force of structured light and paving a way to quick intelligent design and optimization of structured-light-based optical tweezers.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"596 \",\"pages\":\"Article 132383\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825009113\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825009113","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

光镊在探索光-物质相互作用中起着至关重要的作用。然而,光学力的表征——特别是结构光场,如圆形艾里光束——在像广义洛伦兹-米氏理论(GLMT)这样的传统数值框架下仍然需要大量的计算。为了克服这一限制,我们提出了一种增强的混合深度学习框架,该框架集成了深度神经网络、GLMT模拟和多元灵敏度分析,用于快速准确地预测作用在Mie粒子上的光捕获力。我们的模型在5000个glmt计算的数据集上进行了训练,达到了97.9%的预测准确率,同时将推理延迟减少到32毫秒,比传统方法加速了3.9×104-fold。通过Sobol全局灵敏度分析,我们确定了影响光力响应的主要光束参数,并指导了全连接神经网络的设计,使所有验证数据的均方误差(MSE)达到2.04×10−2,相对预测误差低于1.2%。这些结果表明,空间分布变化对光力调制的贡献最为显著,深度学习加速了光性能的探索,提供了对结构光的光捕获力的更深入理解,并为基于结构光的光镊的快速智能设计和优化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical trapping force exploration on Mie particles for structured light via multivariate sensitivity analysis and deep learning
Optical tweezers play a critical role in exploring light–matter interactions. However, characterization of optical forces – especially for structured light fields such as circular Airy beams – remains computationally intensive under conventional numerical frameworks like the Generalized Lorenz-Mie Theory (GLMT). To overcome this limitation, we present an enhanced hybrid deep learning framework that integrates deep neural networks, GLMT simulations, and multivariate sensitivity analysis for rapid and precise prediction of optical trapping forces acting on Mie particles. Our model is trained on 5000 GLMT-calculated datasets and achieves 97.9% prediction accuracy while reducing inference latency to just 32 ms—representing a 3.9×104-fold acceleration over traditional methods. By incorporating Sobol global sensitivity analysis, we identify the dominant beam parameters influencing optical force responses and guide the design of a fully connected neural network that achieves a mean squared error (MSE) of 2.04×102 and a relative prediction error below 1.2% for all validation data. These results demonstrate that spatial distribution variations contribute most significantly to optical force modulation and deep learning accelerates optical capability exploration, providing a deeper understanding on the optical trapping force of structured light and paving a way to quick intelligent design and optimization of structured-light-based optical tweezers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信