Elliot Borne, Jean-Marie Aubry, Véronique Nardello-Rataj
{"title":"表面活性分子和纳米颗粒催化剂在乳状液和微乳中液液界面氧化的研究进展","authors":"Elliot Borne, Jean-Marie Aubry, Véronique Nardello-Rataj","doi":"10.1016/j.cocis.2025.101952","DOIUrl":null,"url":null,"abstract":"<div><div>This review presents recent advances in catalytic oxidations performed in emulsified biphasic systems using primary oxidants (O<sub>2</sub>, H<sub>2</sub>O<sub>2,</sub> and <em>t</em>-BuOOH) mediated by surface-active molecular or nanoparticulate catalysts. Emphasis is placed on the activation of these sustainable oxidants by redox catalysts compatible with aqueous biphasic environments. A distinctive feature of this review is its colloid-focused perspective, examining how the formulation and composition of surface-active catalyst/oil/water systems drives emulsion morphology, droplet size, demixing kinetics, and ultimately the ease of product recovery and catalyst recycling. Particular attention is given to the design of redox-active amphiphiles, which enhance interfacial coverage and facilitate (nano)emulsification. Three classes of systems are considered: (<em>i</em>) systems using separate phase-transfer agents (PTAs) and redox catalysts; (<em>ii</em>) integrated systems involving catalytic surfactants or catalytic ionic liquids (CILs) that combine interfacial and redox functions within a single species; and (<em>iii</em>) amphiphilic nanoparticles that adsorb at the oil–water interface, serving as both emulsion stabilizers (the so-called Pickering emulsions) and oxidation catalysts. A dedicated section addresses the challenge of chemically generated singlet oxygen (<sup>1</sup>O<sub>2</sub>) in organic synthesis. Due to its short lifetime in water (≈4 μs), <sup>1</sup>O<sub>2</sub> must be generated in aqueous nanodroplets of a microemulsion system to ensure its diffusion into the organic phase before deactivation occurs. Recent innovations in Pickering interfacial catalysis (PIC) highlight that particle-based systems are becoming increasingly elaborated, both for controlling the physicochemical properties of the emulsion and for enhancing catalytic performance. However, several challenges still remain to be overcome before they can be scaled up for industrial applications.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"80 ","pages":"Article 101952"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in interfacial liquid–liquid oxidation in emulsions and microemulsions with surface-active molecular and nanoparticulate catalysts\",\"authors\":\"Elliot Borne, Jean-Marie Aubry, Véronique Nardello-Rataj\",\"doi\":\"10.1016/j.cocis.2025.101952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review presents recent advances in catalytic oxidations performed in emulsified biphasic systems using primary oxidants (O<sub>2</sub>, H<sub>2</sub>O<sub>2,</sub> and <em>t</em>-BuOOH) mediated by surface-active molecular or nanoparticulate catalysts. Emphasis is placed on the activation of these sustainable oxidants by redox catalysts compatible with aqueous biphasic environments. A distinctive feature of this review is its colloid-focused perspective, examining how the formulation and composition of surface-active catalyst/oil/water systems drives emulsion morphology, droplet size, demixing kinetics, and ultimately the ease of product recovery and catalyst recycling. Particular attention is given to the design of redox-active amphiphiles, which enhance interfacial coverage and facilitate (nano)emulsification. Three classes of systems are considered: (<em>i</em>) systems using separate phase-transfer agents (PTAs) and redox catalysts; (<em>ii</em>) integrated systems involving catalytic surfactants or catalytic ionic liquids (CILs) that combine interfacial and redox functions within a single species; and (<em>iii</em>) amphiphilic nanoparticles that adsorb at the oil–water interface, serving as both emulsion stabilizers (the so-called Pickering emulsions) and oxidation catalysts. A dedicated section addresses the challenge of chemically generated singlet oxygen (<sup>1</sup>O<sub>2</sub>) in organic synthesis. Due to its short lifetime in water (≈4 μs), <sup>1</sup>O<sub>2</sub> must be generated in aqueous nanodroplets of a microemulsion system to ensure its diffusion into the organic phase before deactivation occurs. Recent innovations in Pickering interfacial catalysis (PIC) highlight that particle-based systems are becoming increasingly elaborated, both for controlling the physicochemical properties of the emulsion and for enhancing catalytic performance. However, several challenges still remain to be overcome before they can be scaled up for industrial applications.</div></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"80 \",\"pages\":\"Article 101952\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029425000585\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029425000585","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent advances in interfacial liquid–liquid oxidation in emulsions and microemulsions with surface-active molecular and nanoparticulate catalysts
This review presents recent advances in catalytic oxidations performed in emulsified biphasic systems using primary oxidants (O2, H2O2, and t-BuOOH) mediated by surface-active molecular or nanoparticulate catalysts. Emphasis is placed on the activation of these sustainable oxidants by redox catalysts compatible with aqueous biphasic environments. A distinctive feature of this review is its colloid-focused perspective, examining how the formulation and composition of surface-active catalyst/oil/water systems drives emulsion morphology, droplet size, demixing kinetics, and ultimately the ease of product recovery and catalyst recycling. Particular attention is given to the design of redox-active amphiphiles, which enhance interfacial coverage and facilitate (nano)emulsification. Three classes of systems are considered: (i) systems using separate phase-transfer agents (PTAs) and redox catalysts; (ii) integrated systems involving catalytic surfactants or catalytic ionic liquids (CILs) that combine interfacial and redox functions within a single species; and (iii) amphiphilic nanoparticles that adsorb at the oil–water interface, serving as both emulsion stabilizers (the so-called Pickering emulsions) and oxidation catalysts. A dedicated section addresses the challenge of chemically generated singlet oxygen (1O2) in organic synthesis. Due to its short lifetime in water (≈4 μs), 1O2 must be generated in aqueous nanodroplets of a microemulsion system to ensure its diffusion into the organic phase before deactivation occurs. Recent innovations in Pickering interfacial catalysis (PIC) highlight that particle-based systems are becoming increasingly elaborated, both for controlling the physicochemical properties of the emulsion and for enhancing catalytic performance. However, several challenges still remain to be overcome before they can be scaled up for industrial applications.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.