Xi Wang , Tiantian Chen , Peng Pan , Chundong Jiang , Wentao Liu , Xu Yan
{"title":"通过激活Itga6-PI3K/AKT信号通路,钽表面含锶羟基磷灰石涂层快速骨整合","authors":"Xi Wang , Tiantian Chen , Peng Pan , Chundong Jiang , Wentao Liu , Xu Yan","doi":"10.1016/j.mtbio.2025.102284","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to its excellent biocompatibility, tantalum has the potential to replace titanium as a new mainstream bone-repair material. However, it was recognized as an inert metal. Therefore, it is necessary to improve the bioactivity of tantalum through surface modification to achieve more stable osseointegration. The key to designing bone repair materials is to imitate the physical structure and chemical composition of natural bone. In this study, a microscale strontium-containing hydroxyapatite (Sr + HA) coating was loaded onto a tantalum surface using a hydrothermal method, which improved the protein adsorption ability and hydrophilicity of tantalum. The incorporation of Sr also promoted the release of Sr<sup>2+</sup> and Ca<sup>2+</sup>. Furthermore, the results of in vitro and in vivo experiments showed that Sr + HA had good biocompatibility and bone integration. The research and development of biomaterials needs to be based on an understanding of the mechanism of action between materials and cells. Combined with transcriptomics and label-free quantitative proteomics analyses, it was confirmed for the first time that Sr + HA could activate the PI3K/AKT pathway by up-regulating Itga6 to promote the osteogenic differentiation of cells, thereby providing a theoretical basis for the development of tantalum-based implants with excellent osseointegration properties.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"35 ","pages":"Article 102284"},"PeriodicalIF":10.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid osteointegration with a strontium-containing hydroxyapatite coating on tantalum by activating Itga6-PI3K/AKT signaling pathway\",\"authors\":\"Xi Wang , Tiantian Chen , Peng Pan , Chundong Jiang , Wentao Liu , Xu Yan\",\"doi\":\"10.1016/j.mtbio.2025.102284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Owing to its excellent biocompatibility, tantalum has the potential to replace titanium as a new mainstream bone-repair material. However, it was recognized as an inert metal. Therefore, it is necessary to improve the bioactivity of tantalum through surface modification to achieve more stable osseointegration. The key to designing bone repair materials is to imitate the physical structure and chemical composition of natural bone. In this study, a microscale strontium-containing hydroxyapatite (Sr + HA) coating was loaded onto a tantalum surface using a hydrothermal method, which improved the protein adsorption ability and hydrophilicity of tantalum. The incorporation of Sr also promoted the release of Sr<sup>2+</sup> and Ca<sup>2+</sup>. Furthermore, the results of in vitro and in vivo experiments showed that Sr + HA had good biocompatibility and bone integration. The research and development of biomaterials needs to be based on an understanding of the mechanism of action between materials and cells. Combined with transcriptomics and label-free quantitative proteomics analyses, it was confirmed for the first time that Sr + HA could activate the PI3K/AKT pathway by up-regulating Itga6 to promote the osteogenic differentiation of cells, thereby providing a theoretical basis for the development of tantalum-based implants with excellent osseointegration properties.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"35 \",\"pages\":\"Article 102284\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006425008543\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425008543","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Rapid osteointegration with a strontium-containing hydroxyapatite coating on tantalum by activating Itga6-PI3K/AKT signaling pathway
Owing to its excellent biocompatibility, tantalum has the potential to replace titanium as a new mainstream bone-repair material. However, it was recognized as an inert metal. Therefore, it is necessary to improve the bioactivity of tantalum through surface modification to achieve more stable osseointegration. The key to designing bone repair materials is to imitate the physical structure and chemical composition of natural bone. In this study, a microscale strontium-containing hydroxyapatite (Sr + HA) coating was loaded onto a tantalum surface using a hydrothermal method, which improved the protein adsorption ability and hydrophilicity of tantalum. The incorporation of Sr also promoted the release of Sr2+ and Ca2+. Furthermore, the results of in vitro and in vivo experiments showed that Sr + HA had good biocompatibility and bone integration. The research and development of biomaterials needs to be based on an understanding of the mechanism of action between materials and cells. Combined with transcriptomics and label-free quantitative proteomics analyses, it was confirmed for the first time that Sr + HA could activate the PI3K/AKT pathway by up-regulating Itga6 to promote the osteogenic differentiation of cells, thereby providing a theoretical basis for the development of tantalum-based implants with excellent osseointegration properties.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).