Xu Yang , Rui Wang , Kaiwen Li , Wenhua Li , Tao Zhang
{"title":"基于图神经网络的黑箱优化问题探索性景观分析","authors":"Xu Yang , Rui Wang , Kaiwen Li , Wenhua Li , Tao Zhang","doi":"10.1016/j.swevo.2025.102136","DOIUrl":null,"url":null,"abstract":"<div><div>Most real-world optimization problems are poorly understood, some of which are black-box optimization problems (BBOPs). Exploratory landscape analysis (ELA) paves the way for algorithm design to deal with BBOPs. Existing ELA methods have limitations on unseen problems and lack analysis on the problem itself. To this end, this study introduces a novel ELA framework leveraging Graph Neural Network (GNN) upon BBOP’s surrogate model. Specifically, a neural network surrogate model is constructed whose architecture is utilized to represent BBOP in the form of graph. Then, GNN is responsible for capturing the relationships between the graph-represented BBOP and high-level features. As one of the most notable features in optimization, multimodality of multi-objective problems is to be identified for illustration. More than 99% accuracy on independent test set demonstrates the effectiveness of the proposed framework with simultaneously avoiding the effect of problem dimensions.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"99 ","pages":"Article 102136"},"PeriodicalIF":8.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory landscape analysis on black-box optimization problems via Graph Neural Network\",\"authors\":\"Xu Yang , Rui Wang , Kaiwen Li , Wenhua Li , Tao Zhang\",\"doi\":\"10.1016/j.swevo.2025.102136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most real-world optimization problems are poorly understood, some of which are black-box optimization problems (BBOPs). Exploratory landscape analysis (ELA) paves the way for algorithm design to deal with BBOPs. Existing ELA methods have limitations on unseen problems and lack analysis on the problem itself. To this end, this study introduces a novel ELA framework leveraging Graph Neural Network (GNN) upon BBOP’s surrogate model. Specifically, a neural network surrogate model is constructed whose architecture is utilized to represent BBOP in the form of graph. Then, GNN is responsible for capturing the relationships between the graph-represented BBOP and high-level features. As one of the most notable features in optimization, multimodality of multi-objective problems is to be identified for illustration. More than 99% accuracy on independent test set demonstrates the effectiveness of the proposed framework with simultaneously avoiding the effect of problem dimensions.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"99 \",\"pages\":\"Article 102136\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225002949\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225002949","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploratory landscape analysis on black-box optimization problems via Graph Neural Network
Most real-world optimization problems are poorly understood, some of which are black-box optimization problems (BBOPs). Exploratory landscape analysis (ELA) paves the way for algorithm design to deal with BBOPs. Existing ELA methods have limitations on unseen problems and lack analysis on the problem itself. To this end, this study introduces a novel ELA framework leveraging Graph Neural Network (GNN) upon BBOP’s surrogate model. Specifically, a neural network surrogate model is constructed whose architecture is utilized to represent BBOP in the form of graph. Then, GNN is responsible for capturing the relationships between the graph-represented BBOP and high-level features. As one of the most notable features in optimization, multimodality of multi-objective problems is to be identified for illustration. More than 99% accuracy on independent test set demonstrates the effectiveness of the proposed framework with simultaneously avoiding the effect of problem dimensions.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.