Rakshitha Godahewa , Christoph Bergmeir , Zeynep Erkin Baz , Chengjun Zhu , Zhangdi Song , Salvador García , Dario Benavides
{"title":"论预报稳定性","authors":"Rakshitha Godahewa , Christoph Bergmeir , Zeynep Erkin Baz , Chengjun Zhu , Zhangdi Song , Salvador García , Dario Benavides","doi":"10.1016/j.ijforecast.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Forecasts are typically produced in a business context on a regular basis to make downstream decisions. Here, forecasts should not only be as accurate as possible, but also should not change arbitrarily, and be stable in some sense. In this paper, we explore two types of forecast stability that we call vertical stability (for forecasts from different origins for the same target) and horizontal stability (for forecasts from the same origin for different targets). Existing works in the literature are only applicable to certain base models and can only stabilise forecasts vertically. We propose a simple linear-interpolation-based approach to stabilise the forecasts provided by any base model, both vertically and horizontally. Our method makes the trade-off between stability and accuracy explicit, producing forecasts at any point in the spectrum of this trade-off. We used N-BEATS, pooled regression, LightGBM, ETS, and ARIMA as base models in our evaluation across different error and stability measures on four publicly available datasets. On some datasets, the proposed framework achieved forecasts that were both more accurate and stable than the base forecasts. On the others, we achieved forecasts that were slightly less accurate but much more stable.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1539-1558"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On forecast stability\",\"authors\":\"Rakshitha Godahewa , Christoph Bergmeir , Zeynep Erkin Baz , Chengjun Zhu , Zhangdi Song , Salvador García , Dario Benavides\",\"doi\":\"10.1016/j.ijforecast.2025.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forecasts are typically produced in a business context on a regular basis to make downstream decisions. Here, forecasts should not only be as accurate as possible, but also should not change arbitrarily, and be stable in some sense. In this paper, we explore two types of forecast stability that we call vertical stability (for forecasts from different origins for the same target) and horizontal stability (for forecasts from the same origin for different targets). Existing works in the literature are only applicable to certain base models and can only stabilise forecasts vertically. We propose a simple linear-interpolation-based approach to stabilise the forecasts provided by any base model, both vertically and horizontally. Our method makes the trade-off between stability and accuracy explicit, producing forecasts at any point in the spectrum of this trade-off. We used N-BEATS, pooled regression, LightGBM, ETS, and ARIMA as base models in our evaluation across different error and stability measures on four publicly available datasets. On some datasets, the proposed framework achieved forecasts that were both more accurate and stable than the base forecasts. On the others, we achieved forecasts that were slightly less accurate but much more stable.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1539-1558\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207025000068\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207025000068","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Forecasts are typically produced in a business context on a regular basis to make downstream decisions. Here, forecasts should not only be as accurate as possible, but also should not change arbitrarily, and be stable in some sense. In this paper, we explore two types of forecast stability that we call vertical stability (for forecasts from different origins for the same target) and horizontal stability (for forecasts from the same origin for different targets). Existing works in the literature are only applicable to certain base models and can only stabilise forecasts vertically. We propose a simple linear-interpolation-based approach to stabilise the forecasts provided by any base model, both vertically and horizontally. Our method makes the trade-off between stability and accuracy explicit, producing forecasts at any point in the spectrum of this trade-off. We used N-BEATS, pooled regression, LightGBM, ETS, and ARIMA as base models in our evaluation across different error and stability measures on four publicly available datasets. On some datasets, the proposed framework achieved forecasts that were both more accurate and stable than the base forecasts. On the others, we achieved forecasts that were slightly less accurate but much more stable.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.