{"title":"概率预测的自适应波动率方法及其在M6金融预测竞赛中的应用","authors":"Joseph de Vilmarest , Nicklas Werge","doi":"10.1016/j.ijforecast.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we address the problem of probabilistic forecasting using an adaptive volatility method rooted in classical time-varying volatility models and leveraging online stochastic optimization algorithms. These principles were successfully applied in the M6 forecasting competition under the team named <em>AdaGaussMC</em>. Our approach takes a unique path by embracing the Efficient Market Hypothesis (EMH) instead of trying to beat the market directly. We focus on evaluating the efficient market and emphasize the importance of online forecasting in adapting to the dynamic nature of financial markets. The three key points of our approach are: (a) apply the univariate time-varying volatility model AdaVol, (b) obtain probabilistic forecasts of future returns, and (c) optimize the competition metrics using stochastic gradient-based algorithms. We contend that the simplicity of our approach contributes to its robustness and consistency. Our performance in the M6 competition resulted in an overall 7<sup>th</sup> place, with a 5<sup>th</sup> place in the forecasting task. Considering our approach’s perceived simplicity, this achievement underscores the efficacy of our adaptive volatility method in probabilistic forecasting.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1514-1520"},"PeriodicalIF":7.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive volatility method for probabilistic forecasting and its application to the M6 financial forecasting competition\",\"authors\":\"Joseph de Vilmarest , Nicklas Werge\",\"doi\":\"10.1016/j.ijforecast.2024.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we address the problem of probabilistic forecasting using an adaptive volatility method rooted in classical time-varying volatility models and leveraging online stochastic optimization algorithms. These principles were successfully applied in the M6 forecasting competition under the team named <em>AdaGaussMC</em>. Our approach takes a unique path by embracing the Efficient Market Hypothesis (EMH) instead of trying to beat the market directly. We focus on evaluating the efficient market and emphasize the importance of online forecasting in adapting to the dynamic nature of financial markets. The three key points of our approach are: (a) apply the univariate time-varying volatility model AdaVol, (b) obtain probabilistic forecasts of future returns, and (c) optimize the competition metrics using stochastic gradient-based algorithms. We contend that the simplicity of our approach contributes to its robustness and consistency. Our performance in the M6 competition resulted in an overall 7<sup>th</sup> place, with a 5<sup>th</sup> place in the forecasting task. Considering our approach’s perceived simplicity, this achievement underscores the efficacy of our adaptive volatility method in probabilistic forecasting.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1514-1520\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000554\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000554","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
An adaptive volatility method for probabilistic forecasting and its application to the M6 financial forecasting competition
In this paper, we address the problem of probabilistic forecasting using an adaptive volatility method rooted in classical time-varying volatility models and leveraging online stochastic optimization algorithms. These principles were successfully applied in the M6 forecasting competition under the team named AdaGaussMC. Our approach takes a unique path by embracing the Efficient Market Hypothesis (EMH) instead of trying to beat the market directly. We focus on evaluating the efficient market and emphasize the importance of online forecasting in adapting to the dynamic nature of financial markets. The three key points of our approach are: (a) apply the univariate time-varying volatility model AdaVol, (b) obtain probabilistic forecasts of future returns, and (c) optimize the competition metrics using stochastic gradient-based algorithms. We contend that the simplicity of our approach contributes to its robustness and consistency. Our performance in the M6 competition resulted in an overall 7th place, with a 5th place in the forecasting task. Considering our approach’s perceived simplicity, this achievement underscores the efficacy of our adaptive volatility method in probabilistic forecasting.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.