{"title":"动态市场中的自适应预测:AutoTS在M6竞争中的评价","authors":"Colin Catlin","doi":"10.1016/j.ijforecast.2025.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>In contemporary forecasting, the challenges of navigating the intricacies of erratic human-induced patterns combine with the challenges of navigating the overwhelming number of methods and models available to manage these data. The M6 Competition, which emphasized repeated, real-time monthly forecasting of stock markets, featured many of these difficulties. Here, AutoTS, an open-source Python package designed specifically for probabilistic time series predictions, is evaluated within the context of this competition. AutoTS includes an extensive repertoire of models, augmented by robust data preprocessing utilities, and employs genetic algorithms to fine-tune model parameters, contingent upon user-delineated evaluation metrics. This study describes the deployment of AutoTS in the M6 Competition, which won the investment decision challenge, and outlines the model selection pipeline and the process of converting forecasts into decisions which produced this result. Although a single definitive model remains elusive, these findings underscore the potential value of methodologies that are dynamic and largely autonomous.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1485-1493"},"PeriodicalIF":7.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive forecasting in dynamic markets: An evaluation of AutoTS within the M6 competition\",\"authors\":\"Colin Catlin\",\"doi\":\"10.1016/j.ijforecast.2025.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In contemporary forecasting, the challenges of navigating the intricacies of erratic human-induced patterns combine with the challenges of navigating the overwhelming number of methods and models available to manage these data. The M6 Competition, which emphasized repeated, real-time monthly forecasting of stock markets, featured many of these difficulties. Here, AutoTS, an open-source Python package designed specifically for probabilistic time series predictions, is evaluated within the context of this competition. AutoTS includes an extensive repertoire of models, augmented by robust data preprocessing utilities, and employs genetic algorithms to fine-tune model parameters, contingent upon user-delineated evaluation metrics. This study describes the deployment of AutoTS in the M6 Competition, which won the investment decision challenge, and outlines the model selection pipeline and the process of converting forecasts into decisions which produced this result. Although a single definitive model remains elusive, these findings underscore the potential value of methodologies that are dynamic and largely autonomous.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1485-1493\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702500072X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702500072X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Adaptive forecasting in dynamic markets: An evaluation of AutoTS within the M6 competition
In contemporary forecasting, the challenges of navigating the intricacies of erratic human-induced patterns combine with the challenges of navigating the overwhelming number of methods and models available to manage these data. The M6 Competition, which emphasized repeated, real-time monthly forecasting of stock markets, featured many of these difficulties. Here, AutoTS, an open-source Python package designed specifically for probabilistic time series predictions, is evaluated within the context of this competition. AutoTS includes an extensive repertoire of models, augmented by robust data preprocessing utilities, and employs genetic algorithms to fine-tune model parameters, contingent upon user-delineated evaluation metrics. This study describes the deployment of AutoTS in the M6 Competition, which won the investment decision challenge, and outlines the model selection pipeline and the process of converting forecasts into decisions which produced this result. Although a single definitive model remains elusive, these findings underscore the potential value of methodologies that are dynamic and largely autonomous.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.