{"title":"淀粉样芽孢杆菌(Bacillus velezensis, WA11)直接从木质纤维素生物质底物中合成糖活性酶(CAZyme)和聚γ-谷氨酸(γ-PGA)的基因组挖掘","authors":"Rakeshkumar Yadav , Pranay Awathare , Pushkar Shitut , Vaishnavi Mahajan , Pranav Nair , Mahesh Dharne","doi":"10.1016/j.bcab.2025.103747","DOIUrl":null,"url":null,"abstract":"<div><div>Poly-γ-glutamic acid (γ-PGA/PGA), a non-toxic and biodegradable polymer with additional diverse properties such as higher heat resistance and water retention, is widely implicated in myriad applications, including agricultural and food processing, medical treatments, and cosmetics. The industrial bio-based production of γ-PGA is primarily hindered by the potential of microbial strains and substrate costs, which are attributed primarily to the carbon sources. The present study is a proof-of-concept study, wherein a bacterial isolate, <em>Bacillus velezensis</em> WA11 strain, was employed for the production of γ-PGA from sugarcane bagasse (lignocellulosic biomass) without any pretreatment or pre-processing. The CAZyme annotation identified several enzyme families involved in metabolizing complex polysaccharides, including cellulose, xylan, and lignin. We obtained 104.3 g/L γ-PGA production with a productivity of 1.09 g/L/h in the optimized synthetic medium containing maltose as a carbon source, 2.9-fold higher than the earlier study using maltose as a carbon source. Further, substituting maltose with untreated sugarcane bagasse resulted in 12 g/L of γ-PGA, higher than most of the reported studies utilizing pretreated lignocellulosic biomass (LCB) lysates for producing γ-PGA. The present study demonstrates the production of γ-PGA using lignocellulosic biomass without pretreatment, providing a chemical-free, sustainable avenue for directly utilizing untreated lignocellulosic biomass (LCB) to produce expensive polymers by employing potential bacterial strains.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"69 ","pages":"Article 103747"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome mining of carbohydrate-active enzymes (CAZyme) and poly-γ-glutamic acid (γ-PGA) synthesis by Bacillus velezensis (WA11) directly from lignocellulosic biomass-based substrate\",\"authors\":\"Rakeshkumar Yadav , Pranay Awathare , Pushkar Shitut , Vaishnavi Mahajan , Pranav Nair , Mahesh Dharne\",\"doi\":\"10.1016/j.bcab.2025.103747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Poly-γ-glutamic acid (γ-PGA/PGA), a non-toxic and biodegradable polymer with additional diverse properties such as higher heat resistance and water retention, is widely implicated in myriad applications, including agricultural and food processing, medical treatments, and cosmetics. The industrial bio-based production of γ-PGA is primarily hindered by the potential of microbial strains and substrate costs, which are attributed primarily to the carbon sources. The present study is a proof-of-concept study, wherein a bacterial isolate, <em>Bacillus velezensis</em> WA11 strain, was employed for the production of γ-PGA from sugarcane bagasse (lignocellulosic biomass) without any pretreatment or pre-processing. The CAZyme annotation identified several enzyme families involved in metabolizing complex polysaccharides, including cellulose, xylan, and lignin. We obtained 104.3 g/L γ-PGA production with a productivity of 1.09 g/L/h in the optimized synthetic medium containing maltose as a carbon source, 2.9-fold higher than the earlier study using maltose as a carbon source. Further, substituting maltose with untreated sugarcane bagasse resulted in 12 g/L of γ-PGA, higher than most of the reported studies utilizing pretreated lignocellulosic biomass (LCB) lysates for producing γ-PGA. The present study demonstrates the production of γ-PGA using lignocellulosic biomass without pretreatment, providing a chemical-free, sustainable avenue for directly utilizing untreated lignocellulosic biomass (LCB) to produce expensive polymers by employing potential bacterial strains.</div></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":\"69 \",\"pages\":\"Article 103747\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818125002609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125002609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genome mining of carbohydrate-active enzymes (CAZyme) and poly-γ-glutamic acid (γ-PGA) synthesis by Bacillus velezensis (WA11) directly from lignocellulosic biomass-based substrate
Poly-γ-glutamic acid (γ-PGA/PGA), a non-toxic and biodegradable polymer with additional diverse properties such as higher heat resistance and water retention, is widely implicated in myriad applications, including agricultural and food processing, medical treatments, and cosmetics. The industrial bio-based production of γ-PGA is primarily hindered by the potential of microbial strains and substrate costs, which are attributed primarily to the carbon sources. The present study is a proof-of-concept study, wherein a bacterial isolate, Bacillus velezensis WA11 strain, was employed for the production of γ-PGA from sugarcane bagasse (lignocellulosic biomass) without any pretreatment or pre-processing. The CAZyme annotation identified several enzyme families involved in metabolizing complex polysaccharides, including cellulose, xylan, and lignin. We obtained 104.3 g/L γ-PGA production with a productivity of 1.09 g/L/h in the optimized synthetic medium containing maltose as a carbon source, 2.9-fold higher than the earlier study using maltose as a carbon source. Further, substituting maltose with untreated sugarcane bagasse resulted in 12 g/L of γ-PGA, higher than most of the reported studies utilizing pretreated lignocellulosic biomass (LCB) lysates for producing γ-PGA. The present study demonstrates the production of γ-PGA using lignocellulosic biomass without pretreatment, providing a chemical-free, sustainable avenue for directly utilizing untreated lignocellulosic biomass (LCB) to produce expensive polymers by employing potential bacterial strains.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.