机器学习优化增强的金-石墨烯协同元结构超灵敏太赫兹生化探测器

IF 5.9 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Khaled Aliqab , Jacob Wekalao , Ammar Armghan , Meshari Alsharari , Shobhit K. Patel
{"title":"机器学习优化增强的金-石墨烯协同元结构超灵敏太赫兹生化探测器","authors":"Khaled Aliqab ,&nbsp;Jacob Wekalao ,&nbsp;Ammar Armghan ,&nbsp;Meshari Alsharari ,&nbsp;Shobhit K. Patel","doi":"10.1016/j.asej.2025.103749","DOIUrl":null,"url":null,"abstract":"<div><div>The research introduces gold and graphene in a metasurface engineered to identify substances with subtle refractive index variations. The sensor features a multi-layered resonator configuration comprising a central circular resonator and concentric square rings fabricated on a SiO<sub>2</sub> substrate. Through systematic optimization using COMSOL Multiphysics and machine learning technique, the final design achieves exceptional sensitivity of 800 GHz/RIU within the refractive index range of 1.29–1.38 RIU. The sensor demonstrates remarkable performance metrics, including 8.000 RIU<sup>–1</sup>, 0.157, and 13.140 as FOM (figure of merit), detection limit and quality factor. A stacking ensemble regressor approach reduced computational requirements by 88 % while maintaining 96–100 % prediction accuracy. Combining high sensitivity with reliable operation, this design excels in detecting low refractive indices with precision in the THz spectrum. Optimization in machine learning enhances sensitivity by fine-tuning parameters, reducing errors, improving accuracy, refining models, and boosting overall performance effectively.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 12","pages":"Article 103749"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-sensitive terahertz biochemical detector via gold–graphene synergistic metastructures enhanced by machine learning optimization\",\"authors\":\"Khaled Aliqab ,&nbsp;Jacob Wekalao ,&nbsp;Ammar Armghan ,&nbsp;Meshari Alsharari ,&nbsp;Shobhit K. Patel\",\"doi\":\"10.1016/j.asej.2025.103749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research introduces gold and graphene in a metasurface engineered to identify substances with subtle refractive index variations. The sensor features a multi-layered resonator configuration comprising a central circular resonator and concentric square rings fabricated on a SiO<sub>2</sub> substrate. Through systematic optimization using COMSOL Multiphysics and machine learning technique, the final design achieves exceptional sensitivity of 800 GHz/RIU within the refractive index range of 1.29–1.38 RIU. The sensor demonstrates remarkable performance metrics, including 8.000 RIU<sup>–1</sup>, 0.157, and 13.140 as FOM (figure of merit), detection limit and quality factor. A stacking ensemble regressor approach reduced computational requirements by 88 % while maintaining 96–100 % prediction accuracy. Combining high sensitivity with reliable operation, this design excels in detecting low refractive indices with precision in the THz spectrum. Optimization in machine learning enhances sensitivity by fine-tuning parameters, reducing errors, improving accuracy, refining models, and boosting overall performance effectively.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"16 12\",\"pages\":\"Article 103749\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447925004903\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925004903","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究将金和石墨烯引入超表面,用于识别具有细微折射率变化的物质。该传感器具有多层谐振器结构,包括在SiO2衬底上制造的中心圆形谐振器和同心圆环。通过使用COMSOL Multiphysics和机器学习技术进行系统优化,最终设计在1.29-1.38 RIU折射率范围内实现了800 GHz/RIU的超高灵敏度。该传感器表现出卓越的性能指标,包括8.000 RIU-1, 0.157和13.140的FOM(功绩值),检测限和质量因子。叠加集成回归方法减少了88%的计算需求,同时保持96 - 100%的预测精度。该设计结合了高灵敏度和可靠的工作,在太赫兹光谱中具有精确检测低折射率的优势。机器学习中的优化通过微调参数、减少误差、提高精度、改进模型和有效提高整体性能来提高灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-sensitive terahertz biochemical detector via gold–graphene synergistic metastructures enhanced by machine learning optimization
The research introduces gold and graphene in a metasurface engineered to identify substances with subtle refractive index variations. The sensor features a multi-layered resonator configuration comprising a central circular resonator and concentric square rings fabricated on a SiO2 substrate. Through systematic optimization using COMSOL Multiphysics and machine learning technique, the final design achieves exceptional sensitivity of 800 GHz/RIU within the refractive index range of 1.29–1.38 RIU. The sensor demonstrates remarkable performance metrics, including 8.000 RIU–1, 0.157, and 13.140 as FOM (figure of merit), detection limit and quality factor. A stacking ensemble regressor approach reduced computational requirements by 88 % while maintaining 96–100 % prediction accuracy. Combining high sensitivity with reliable operation, this design excels in detecting low refractive indices with precision in the THz spectrum. Optimization in machine learning enhances sensitivity by fine-tuning parameters, reducing errors, improving accuracy, refining models, and boosting overall performance effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信