Trung T. Pham , Jean-François Colomer , José Ignacio Veytia-Bucheli , Benjamin Ledoux , Henri-François Renard , Cédric R. Vandenabeele , Laurent Houssiau , Laurent A. Francis , Stéphane P. Vincent , Robert Sporken
{"title":"用于生物传感应用的场效应晶体管,使用石墨烯通道和富胺涂层","authors":"Trung T. Pham , Jean-François Colomer , José Ignacio Veytia-Bucheli , Benjamin Ledoux , Henri-François Renard , Cédric R. Vandenabeele , Laurent Houssiau , Laurent A. Francis , Stéphane P. Vincent , Robert Sporken","doi":"10.1016/j.biosx.2025.100673","DOIUrl":null,"url":null,"abstract":"<div><div>Since graphene has a unique band structure with the valence and conduction bands touching each other at a single point called the Dirac point, this makes it extremely sensitive to the surroundings such as doping, external electric field, mechanical deformation, etc. Hence, it is very desirable for sensing applications. However, its surface inertness poses significant drawbacks. Therefore, it is necessary to treat the graphene surface to bind biomolecules. In this paper, we report the use of amine-functionalized graphene by plasma polymerization to detect the presence of biomolecules in graphene channel based on a liquid-gate field-effect transistor (LG-GFET). Taking streptavidin and biotin as an example, the binding interactions of streptavidin–biotin complexes are detected by monitoring the shift of the Dirac point. By varying the streptavidin concentrations from 0.1 nM to 1000 nM, we found that our LG-GFET achieves detection capabilities as low as 0.1 nM. Our approach can be applied for the detection of biological molecules with low detection limit, high sensitivity, and stability.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"27 ","pages":"Article 100673"},"PeriodicalIF":10.6100,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-effect transistor for biosensing applications using a graphene channel with amine-rich coatings\",\"authors\":\"Trung T. Pham , Jean-François Colomer , José Ignacio Veytia-Bucheli , Benjamin Ledoux , Henri-François Renard , Cédric R. Vandenabeele , Laurent Houssiau , Laurent A. Francis , Stéphane P. Vincent , Robert Sporken\",\"doi\":\"10.1016/j.biosx.2025.100673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since graphene has a unique band structure with the valence and conduction bands touching each other at a single point called the Dirac point, this makes it extremely sensitive to the surroundings such as doping, external electric field, mechanical deformation, etc. Hence, it is very desirable for sensing applications. However, its surface inertness poses significant drawbacks. Therefore, it is necessary to treat the graphene surface to bind biomolecules. In this paper, we report the use of amine-functionalized graphene by plasma polymerization to detect the presence of biomolecules in graphene channel based on a liquid-gate field-effect transistor (LG-GFET). Taking streptavidin and biotin as an example, the binding interactions of streptavidin–biotin complexes are detected by monitoring the shift of the Dirac point. By varying the streptavidin concentrations from 0.1 nM to 1000 nM, we found that our LG-GFET achieves detection capabilities as low as 0.1 nM. Our approach can be applied for the detection of biological molecules with low detection limit, high sensitivity, and stability.</div></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"27 \",\"pages\":\"Article 100673\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137025001001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025001001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Field-effect transistor for biosensing applications using a graphene channel with amine-rich coatings
Since graphene has a unique band structure with the valence and conduction bands touching each other at a single point called the Dirac point, this makes it extremely sensitive to the surroundings such as doping, external electric field, mechanical deformation, etc. Hence, it is very desirable for sensing applications. However, its surface inertness poses significant drawbacks. Therefore, it is necessary to treat the graphene surface to bind biomolecules. In this paper, we report the use of amine-functionalized graphene by plasma polymerization to detect the presence of biomolecules in graphene channel based on a liquid-gate field-effect transistor (LG-GFET). Taking streptavidin and biotin as an example, the binding interactions of streptavidin–biotin complexes are detected by monitoring the shift of the Dirac point. By varying the streptavidin concentrations from 0.1 nM to 1000 nM, we found that our LG-GFET achieves detection capabilities as low as 0.1 nM. Our approach can be applied for the detection of biological molecules with low detection limit, high sensitivity, and stability.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.