{"title":"子集和的渐近均匀分布","authors":"Jing Wang","doi":"10.1016/j.ejc.2025.104239","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a finite abelian group of order <span><math><mi>n</mi></math></span>, and for each <span><math><mrow><mi>a</mi><mo>∈</mo><mi>G</mi></mrow></math></span> and integer <span><math><mrow><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>n</mi></mrow></math></span> let <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> denote the family of all <span><math><mi>h</mi></math></span>-element subsets of <span><math><mi>G</mi></math></span> whose sum is <span><math><mi>a</mi></math></span>. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> (as <span><math><mi>a</mi></math></span> ranges over <span><math><mi>G</mi></math></span>) become asymptotically equal as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>h</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every <span><math><mrow><mn>4</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104239"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic uniform distribution of subset sums\",\"authors\":\"Jing Wang\",\"doi\":\"10.1016/j.ejc.2025.104239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a finite abelian group of order <span><math><mi>n</mi></math></span>, and for each <span><math><mrow><mi>a</mi><mo>∈</mo><mi>G</mi></mrow></math></span> and integer <span><math><mrow><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>n</mi></mrow></math></span> let <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> denote the family of all <span><math><mi>h</mi></math></span>-element subsets of <span><math><mi>G</mi></math></span> whose sum is <span><math><mi>a</mi></math></span>. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> (as <span><math><mi>a</mi></math></span> ranges over <span><math><mi>G</mi></math></span>) become asymptotically equal as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>h</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every <span><math><mrow><mn>4</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104239\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The asymptotic uniform distribution of subset sums
Let be a finite abelian group of order , and for each and integer let denote the family of all -element subsets of whose sum is . A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families (as ranges over ) become asymptotically equal as when . We affirmatively answer this question and in fact show that the same asymptotic equality holds for every .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.