子集和的渐近均匀分布

IF 0.9 3区 数学 Q1 MATHEMATICS
Jing Wang
{"title":"子集和的渐近均匀分布","authors":"Jing Wang","doi":"10.1016/j.ejc.2025.104239","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a finite abelian group of order <span><math><mi>n</mi></math></span>, and for each <span><math><mrow><mi>a</mi><mo>∈</mo><mi>G</mi></mrow></math></span> and integer <span><math><mrow><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>n</mi></mrow></math></span> let <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> denote the family of all <span><math><mi>h</mi></math></span>-element subsets of <span><math><mi>G</mi></math></span> whose sum is <span><math><mi>a</mi></math></span>. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> (as <span><math><mi>a</mi></math></span> ranges over <span><math><mi>G</mi></math></span>) become asymptotically equal as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>h</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every <span><math><mrow><mn>4</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104239"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic uniform distribution of subset sums\",\"authors\":\"Jing Wang\",\"doi\":\"10.1016/j.ejc.2025.104239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a finite abelian group of order <span><math><mi>n</mi></math></span>, and for each <span><math><mrow><mi>a</mi><mo>∈</mo><mi>G</mi></mrow></math></span> and integer <span><math><mrow><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>n</mi></mrow></math></span> let <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> denote the family of all <span><math><mi>h</mi></math></span>-element subsets of <span><math><mi>G</mi></math></span> whose sum is <span><math><mi>a</mi></math></span>. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> (as <span><math><mi>a</mi></math></span> ranges over <span><math><mi>G</mi></math></span>) become asymptotically equal as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>h</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every <span><math><mrow><mn>4</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104239\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是n阶的有限阿别群,对于a∈G和整数1≤h≤n,设Fa(h)表示G的所有h元素子集的族,其和为a。Katona和Makar-Limanov提出的一个问题是,当h=n2时,族Fa(h)的最小和最大大小(作为G上的范围)是否渐近等于n→∞。我们肯定地回答了这个问题,并且事实上证明了对于每一个4≤h≤n2+1都成立相同的渐近等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotic uniform distribution of subset sums
Let G be a finite abelian group of order n, and for each aG and integer 1hn let Fa(h) denote the family of all h-element subsets of G whose sum is a. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families Fa(h) (as a ranges over G) become asymptotically equal as n when h=n2. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every 4hn2+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信