感官种群计算多样性的起源和目标

IF 1.4 4区 心理学 Q4 NEUROSCIENCES
Wiktor F. Młynarski
{"title":"感官种群计算多样性的起源和目标","authors":"Wiktor F. Młynarski","doi":"10.1016/j.visres.2025.108683","DOIUrl":null,"url":null,"abstract":"<div><div>Populations of sensory neurons are not homogeneous. Even neighboring neurons located in the same brain area can process identical stimuli in significantly different ways. Retinal ganglion cells (RGCs) are a prominent example of such heterogeneity — they exhibit diverse properties whose computational role and purpose remain mysterious. In this review, we explore normative theories of neural computation that attempt to explain the origins and role of functional variability in the retina. We first express a general mathematical formulation of normative theories of neural computation and identify components of these theories that can explain the heterogeneity of sensory populations. We then organize existing theoretical studies of retinal coding according to the factors they highlight as explanations of the computational diversity in the retina — the beginning of the visual hierarchy.</div></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"237 ","pages":"Article 108683"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origins and objectives of computational diversity in sensory populations\",\"authors\":\"Wiktor F. Młynarski\",\"doi\":\"10.1016/j.visres.2025.108683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Populations of sensory neurons are not homogeneous. Even neighboring neurons located in the same brain area can process identical stimuli in significantly different ways. Retinal ganglion cells (RGCs) are a prominent example of such heterogeneity — they exhibit diverse properties whose computational role and purpose remain mysterious. In this review, we explore normative theories of neural computation that attempt to explain the origins and role of functional variability in the retina. We first express a general mathematical formulation of normative theories of neural computation and identify components of these theories that can explain the heterogeneity of sensory populations. We then organize existing theoretical studies of retinal coding according to the factors they highlight as explanations of the computational diversity in the retina — the beginning of the visual hierarchy.</div></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":\"237 \",\"pages\":\"Article 108683\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698925001440\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698925001440","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

感觉神经元的种群并不均匀。即使是位于同一大脑区域的相邻神经元也可以以明显不同的方式处理相同的刺激。视网膜神经节细胞(RGCs)是这种异质性的一个突出例子-它们表现出不同的特性,其计算作用和目的仍然是神秘的。在这篇综述中,我们探讨了神经计算的规范理论,试图解释视网膜功能变异性的起源和作用。我们首先表达了神经计算规范理论的一般数学公式,并确定了这些理论的组成部分,可以解释感官群体的异质性。然后,我们根据他们强调的解释视网膜计算多样性的因素,组织现有的视网膜编码理论研究-视觉层次的开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Origins and objectives of computational diversity in sensory populations
Populations of sensory neurons are not homogeneous. Even neighboring neurons located in the same brain area can process identical stimuli in significantly different ways. Retinal ganglion cells (RGCs) are a prominent example of such heterogeneity — they exhibit diverse properties whose computational role and purpose remain mysterious. In this review, we explore normative theories of neural computation that attempt to explain the origins and role of functional variability in the retina. We first express a general mathematical formulation of normative theories of neural computation and identify components of these theories that can explain the heterogeneity of sensory populations. We then organize existing theoretical studies of retinal coding according to the factors they highlight as explanations of the computational diversity in the retina — the beginning of the visual hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vision Research
Vision Research 医学-神经科学
CiteScore
3.70
自引率
16.70%
发文量
111
审稿时长
66 days
期刊介绍: Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信