Mingchen Li , Haonan Yao , Yunjie Wei , Shouyang Wang
{"title":"原油预测中模式分解方法的比较研究","authors":"Mingchen Li , Haonan Yao , Yunjie Wei , Shouyang Wang","doi":"10.1016/j.eneco.2025.108853","DOIUrl":null,"url":null,"abstract":"<div><div>Crude oil is of strategic importance in the world economy, and any change in its price affects economic stability, energy security, and even financial market performance. The high level of volatility in crude oil prices is influenced by geopolitical, economic, and speculative factors; it assigns both difficulties and necessities to the forecasting process. To address this, various forecasting models have been employed to capture the dynamics of oil price movements. Of these, the techniques of mode decomposition prove good in decomposing the complex price series into components to increase the accuracy of forecasting models, which perform the task of breaking down the price series into distinct components: the long-term trend, seasonal variation, and the stochastic short-term fluctuation. This study systematically evaluates and compares commonly used decomposition methods, highlighting the necessity of applying these techniques to enhance forecasting accuracy given the inherent complexity of crude oil prices. Through empirical tests, this study measures the effectiveness of these techniques, providing insights into their relative performance. The findings indicate that decomposition methods significantly enhance forecast accuracy and can be categorized into three tiers based on performance, offering guidance for selecting the most suitable approach for crude oil price forecasting.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"150 ","pages":"Article 108853"},"PeriodicalIF":14.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of mode decomposition methods in crude oil forecasting\",\"authors\":\"Mingchen Li , Haonan Yao , Yunjie Wei , Shouyang Wang\",\"doi\":\"10.1016/j.eneco.2025.108853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crude oil is of strategic importance in the world economy, and any change in its price affects economic stability, energy security, and even financial market performance. The high level of volatility in crude oil prices is influenced by geopolitical, economic, and speculative factors; it assigns both difficulties and necessities to the forecasting process. To address this, various forecasting models have been employed to capture the dynamics of oil price movements. Of these, the techniques of mode decomposition prove good in decomposing the complex price series into components to increase the accuracy of forecasting models, which perform the task of breaking down the price series into distinct components: the long-term trend, seasonal variation, and the stochastic short-term fluctuation. This study systematically evaluates and compares commonly used decomposition methods, highlighting the necessity of applying these techniques to enhance forecasting accuracy given the inherent complexity of crude oil prices. Through empirical tests, this study measures the effectiveness of these techniques, providing insights into their relative performance. The findings indicate that decomposition methods significantly enhance forecast accuracy and can be categorized into three tiers based on performance, offering guidance for selecting the most suitable approach for crude oil price forecasting.</div></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"150 \",\"pages\":\"Article 108853\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140988325006802\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988325006802","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
A comparative study of mode decomposition methods in crude oil forecasting
Crude oil is of strategic importance in the world economy, and any change in its price affects economic stability, energy security, and even financial market performance. The high level of volatility in crude oil prices is influenced by geopolitical, economic, and speculative factors; it assigns both difficulties and necessities to the forecasting process. To address this, various forecasting models have been employed to capture the dynamics of oil price movements. Of these, the techniques of mode decomposition prove good in decomposing the complex price series into components to increase the accuracy of forecasting models, which perform the task of breaking down the price series into distinct components: the long-term trend, seasonal variation, and the stochastic short-term fluctuation. This study systematically evaluates and compares commonly used decomposition methods, highlighting the necessity of applying these techniques to enhance forecasting accuracy given the inherent complexity of crude oil prices. Through empirical tests, this study measures the effectiveness of these techniques, providing insights into their relative performance. The findings indicate that decomposition methods significantly enhance forecast accuracy and can be categorized into three tiers based on performance, offering guidance for selecting the most suitable approach for crude oil price forecasting.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.