Xiyue Duan , Kepeng Hu , Jiawei Wang , Xiaozhao Wang , Xiaojun Long , Weiming Lin , Chengwei Wu , Wenjian Weng , Zhangfa Song , Kui Cheng
{"title":"核壳工程Col/Cs@ECM微球用于RA治疗中巨噬细胞靶向细胞内药物释放","authors":"Xiyue Duan , Kepeng Hu , Jiawei Wang , Xiaozhao Wang , Xiaojun Long , Weiming Lin , Chengwei Wu , Wenjian Weng , Zhangfa Song , Kui Cheng","doi":"10.1016/j.bioactmat.2025.08.043","DOIUrl":null,"url":null,"abstract":"<div><div>The imbalance of macrophage polarization between M1 and M2 phenotypes in rheumatoid arthritis (RA) results in a persistent inflammatory cascade. Activating M2 anti-inflammatory polarization, which remove excess extracellular matrix (ECM) via phagocytosis, represents a potential therapeutic target for RA. This study introduces Col/Cs@ECM microspheres, a novel drug delivery system designed for macrophage recognition via a tailored ECM surface, enhancing phagocytic efficiency and accumulation. Moreover, the Col/Cs@ECM microspheres are composed of biocompatible and fully degradable materials, ensuring their safety profile within the physiological environment. Following cell phagocytosis, the collagen/chitosan (Col/Cs) core release the drug (Dexamethasone, Dex) intracellularly to inhibit M1 polarization by inhibiting the NF-κB signaling pathway and to facilitate M2 polarization. This macrophage targeted and intracellular release approach offers a significant advantage over traditional medications by reducing systemic side effects and improving the therapeutic index. The strategy prompts macrophages to express anti-inflammatory cytokines like IL-10 while suppressing pro-inflammatory cytokines such as TNF-α, thereby remodeling the immune microenvironment. Additionally, the specially engineered ECM shell of the microspheres extends the anti-inflammatory response by prolonging macrophage lifespan, a feature that is not present in conventional treatments. This results in improved treatment outcomes in an in vivo RA animal model. This research presents a possible intracellular anti-inflammatory treatment approach for rheumatoid arthritis injection therapy with the potential to outperform existing treatments in terms of efficacy and safety.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 715-729"},"PeriodicalIF":18.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-shell engineered Col/Cs@ECM microspheres for macrophage-targeted intracellular drug release in RA therapy\",\"authors\":\"Xiyue Duan , Kepeng Hu , Jiawei Wang , Xiaozhao Wang , Xiaojun Long , Weiming Lin , Chengwei Wu , Wenjian Weng , Zhangfa Song , Kui Cheng\",\"doi\":\"10.1016/j.bioactmat.2025.08.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The imbalance of macrophage polarization between M1 and M2 phenotypes in rheumatoid arthritis (RA) results in a persistent inflammatory cascade. Activating M2 anti-inflammatory polarization, which remove excess extracellular matrix (ECM) via phagocytosis, represents a potential therapeutic target for RA. This study introduces Col/Cs@ECM microspheres, a novel drug delivery system designed for macrophage recognition via a tailored ECM surface, enhancing phagocytic efficiency and accumulation. Moreover, the Col/Cs@ECM microspheres are composed of biocompatible and fully degradable materials, ensuring their safety profile within the physiological environment. Following cell phagocytosis, the collagen/chitosan (Col/Cs) core release the drug (Dexamethasone, Dex) intracellularly to inhibit M1 polarization by inhibiting the NF-κB signaling pathway and to facilitate M2 polarization. This macrophage targeted and intracellular release approach offers a significant advantage over traditional medications by reducing systemic side effects and improving the therapeutic index. The strategy prompts macrophages to express anti-inflammatory cytokines like IL-10 while suppressing pro-inflammatory cytokines such as TNF-α, thereby remodeling the immune microenvironment. Additionally, the specially engineered ECM shell of the microspheres extends the anti-inflammatory response by prolonging macrophage lifespan, a feature that is not present in conventional treatments. This results in improved treatment outcomes in an in vivo RA animal model. This research presents a possible intracellular anti-inflammatory treatment approach for rheumatoid arthritis injection therapy with the potential to outperform existing treatments in terms of efficacy and safety.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"54 \",\"pages\":\"Pages 715-729\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25004050\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25004050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Core-shell engineered Col/Cs@ECM microspheres for macrophage-targeted intracellular drug release in RA therapy
The imbalance of macrophage polarization between M1 and M2 phenotypes in rheumatoid arthritis (RA) results in a persistent inflammatory cascade. Activating M2 anti-inflammatory polarization, which remove excess extracellular matrix (ECM) via phagocytosis, represents a potential therapeutic target for RA. This study introduces Col/Cs@ECM microspheres, a novel drug delivery system designed for macrophage recognition via a tailored ECM surface, enhancing phagocytic efficiency and accumulation. Moreover, the Col/Cs@ECM microspheres are composed of biocompatible and fully degradable materials, ensuring their safety profile within the physiological environment. Following cell phagocytosis, the collagen/chitosan (Col/Cs) core release the drug (Dexamethasone, Dex) intracellularly to inhibit M1 polarization by inhibiting the NF-κB signaling pathway and to facilitate M2 polarization. This macrophage targeted and intracellular release approach offers a significant advantage over traditional medications by reducing systemic side effects and improving the therapeutic index. The strategy prompts macrophages to express anti-inflammatory cytokines like IL-10 while suppressing pro-inflammatory cytokines such as TNF-α, thereby remodeling the immune microenvironment. Additionally, the specially engineered ECM shell of the microspheres extends the anti-inflammatory response by prolonging macrophage lifespan, a feature that is not present in conventional treatments. This results in improved treatment outcomes in an in vivo RA animal model. This research presents a possible intracellular anti-inflammatory treatment approach for rheumatoid arthritis injection therapy with the potential to outperform existing treatments in terms of efficacy and safety.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.