通过集成的机器学习和粒子群优化算法探索井涌缓解珊瑚白化的潜力

IF 4.4 2区 工程技术 Q1 ENGINEERING, OCEAN
Zhiyu Zou , Yonggang Zhao , Lulu Yue , Yifan Qi , Shicheng Hu , Wei Fan
{"title":"通过集成的机器学习和粒子群优化算法探索井涌缓解珊瑚白化的潜力","authors":"Zhiyu Zou ,&nbsp;Yonggang Zhao ,&nbsp;Lulu Yue ,&nbsp;Yifan Qi ,&nbsp;Shicheng Hu ,&nbsp;Wei Fan","doi":"10.1016/j.apor.2025.104756","DOIUrl":null,"url":null,"abstract":"<div><div>Coral reefs, critical marine ecosystems threatened by escalating sea surface temperatures, demand innovative solutions to mitigate thermal stress. This study introduces a novel Well-Upwelling (WU) system that strategically injects chilled seawater to form a three-dimensional cooling umbrella over coral habitats. Nozzle parameters and layouts are optimized by leveraging computational fluid dynamics (CFD), machine learning (ML), and a hybrid Particle Swarm Optimization (PSO-DPSO) framework. Categorical Boosting (CatBoost) was validated as superior for predicting jet dynamics, enabling efficient optimization of nozzle diameter (<em>d</em><sub>0</sub>), exit velocity (<em>u</em><sub>0</sub>), and discrete layouts. A case study near Nanshan Harbor, China—where severe heat stress occurred in 2024 (Degree Heating Weeks, DHW &gt; 8)—revealed that the integrated PSO-DPSO algorithm improved cooling efficiency by 17.8–46.1 % compared to random layouts, identifying optimal parameters (<em>u</em><sub>0</sub> = 0.20 m/s, <em>d</em><sub>0</sub>= 0.21 m) that balanced efficiency and thermal retention. Notably, the simulation-based results indicate that the optimized system reduced the DHW value during the study period from 1.83 to 0.45 in the coral region, corresponding to a 1.38±0.073℃ decrease in average temperature—below the threshold (DHW = 1) that induces visible coral stress. This work establishes a scalable, data-driven framework for hydrodynamic optimization, demonstrating the WU system’s potential to mitigate coral bleaching by effectively reducing thermal stress in dynamic marine environments.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"163 ","pages":"Article 104756"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of well-upwelling for coral bleaching mitigation via integrated machine learning and particle swarm optimization algorithms\",\"authors\":\"Zhiyu Zou ,&nbsp;Yonggang Zhao ,&nbsp;Lulu Yue ,&nbsp;Yifan Qi ,&nbsp;Shicheng Hu ,&nbsp;Wei Fan\",\"doi\":\"10.1016/j.apor.2025.104756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coral reefs, critical marine ecosystems threatened by escalating sea surface temperatures, demand innovative solutions to mitigate thermal stress. This study introduces a novel Well-Upwelling (WU) system that strategically injects chilled seawater to form a three-dimensional cooling umbrella over coral habitats. Nozzle parameters and layouts are optimized by leveraging computational fluid dynamics (CFD), machine learning (ML), and a hybrid Particle Swarm Optimization (PSO-DPSO) framework. Categorical Boosting (CatBoost) was validated as superior for predicting jet dynamics, enabling efficient optimization of nozzle diameter (<em>d</em><sub>0</sub>), exit velocity (<em>u</em><sub>0</sub>), and discrete layouts. A case study near Nanshan Harbor, China—where severe heat stress occurred in 2024 (Degree Heating Weeks, DHW &gt; 8)—revealed that the integrated PSO-DPSO algorithm improved cooling efficiency by 17.8–46.1 % compared to random layouts, identifying optimal parameters (<em>u</em><sub>0</sub> = 0.20 m/s, <em>d</em><sub>0</sub>= 0.21 m) that balanced efficiency and thermal retention. Notably, the simulation-based results indicate that the optimized system reduced the DHW value during the study period from 1.83 to 0.45 in the coral region, corresponding to a 1.38±0.073℃ decrease in average temperature—below the threshold (DHW = 1) that induces visible coral stress. This work establishes a scalable, data-driven framework for hydrodynamic optimization, demonstrating the WU system’s potential to mitigate coral bleaching by effectively reducing thermal stress in dynamic marine environments.</div></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"163 \",\"pages\":\"Article 104756\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118725003426\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725003426","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

珊瑚礁是受到海平面温度上升威胁的重要海洋生态系统,需要创新的解决方案来减轻热应力。本研究介绍了一种新颖的上升井(Well-Upwelling, WU)系统,该系统战略性地注入冷却海水,在珊瑚栖息地上方形成三维冷却保护伞。喷嘴参数和布局通过利用计算流体动力学(CFD)、机器学习(ML)和混合粒子群优化(PSO-DPSO)框架进行优化。实验证明,CatBoost在预测射流动力学方面具有优势,能够有效优化喷嘴直径(d0)、出口速度(u0)和离散布局。在中国南山港附近的一个案例研究中,在2024年发生了严重的热应力(度加热周,DHW > 8),结果表明,与随机布局相比,集成PSO-DPSO算法将冷却效率提高了17.8 - 46.1%,确定了平衡效率和热保持的最佳参数(u0 = 0.20 m/s, d0= 0.21 m)。值得注意的是,基于模拟的结果表明,优化后的系统在研究期间将珊瑚区的DHW值从1.83降低到0.45,对应于平均温度降低1.38±0.073℃,低于引起可见珊瑚应力的阈值(DHW = 1)。这项工作为水动力优化建立了一个可扩展的、数据驱动的框架,证明了WU系统通过有效减少动态海洋环境中的热应力来减轻珊瑚白化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the potential of well-upwelling for coral bleaching mitigation via integrated machine learning and particle swarm optimization algorithms

Exploring the potential of well-upwelling for coral bleaching mitigation via integrated machine learning and particle swarm optimization algorithms
Coral reefs, critical marine ecosystems threatened by escalating sea surface temperatures, demand innovative solutions to mitigate thermal stress. This study introduces a novel Well-Upwelling (WU) system that strategically injects chilled seawater to form a three-dimensional cooling umbrella over coral habitats. Nozzle parameters and layouts are optimized by leveraging computational fluid dynamics (CFD), machine learning (ML), and a hybrid Particle Swarm Optimization (PSO-DPSO) framework. Categorical Boosting (CatBoost) was validated as superior for predicting jet dynamics, enabling efficient optimization of nozzle diameter (d0), exit velocity (u0), and discrete layouts. A case study near Nanshan Harbor, China—where severe heat stress occurred in 2024 (Degree Heating Weeks, DHW > 8)—revealed that the integrated PSO-DPSO algorithm improved cooling efficiency by 17.8–46.1 % compared to random layouts, identifying optimal parameters (u0 = 0.20 m/s, d0= 0.21 m) that balanced efficiency and thermal retention. Notably, the simulation-based results indicate that the optimized system reduced the DHW value during the study period from 1.83 to 0.45 in the coral region, corresponding to a 1.38±0.073℃ decrease in average temperature—below the threshold (DHW = 1) that induces visible coral stress. This work establishes a scalable, data-driven framework for hydrodynamic optimization, demonstrating the WU system’s potential to mitigate coral bleaching by effectively reducing thermal stress in dynamic marine environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信