Liu Chen , Zhencheng Li , Shaojiu Yan , Hubin Luo , Xingwu Li , Aixue Sha
{"title":"层状结构和晶体取向增强氧化石墨烯增强铝的力学性能","authors":"Liu Chen , Zhencheng Li , Shaojiu Yan , Hubin Luo , Xingwu Li , Aixue Sha","doi":"10.1016/j.carbon.2025.120792","DOIUrl":null,"url":null,"abstract":"<div><div>A lamellar microstructure with crystallographic alignment was achieved in graphene oxide (GO) reinforced aluminum (Al) composites fabricated via powder metallurgy and mechanical processing. The addition of 1.0 wt% GO nearly doubled the tensile yield stress compared to the GO-free counterpart, with a slight reduction in uniform elongation from 12 % to 10 %. Electron back-scattered diffraction analysis revealed a crystallographic relationship between the GO layers and the aluminum matrix, where the <span><math><mrow><msub><mrow><mo>⟨</mo><mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>10</mn></mrow><mo>⟩</mo></mrow><mtext>Al</mtext></msub></mrow></math></span> in both the <span><math><mrow><mo>⟨</mo><mn>111</mn><mo>⟩</mo></mrow></math></span> and <span><math><mrow><mo>⟨</mo><mn>001</mn><mo>⟩</mo></mrow></math></span> fibres, as well as the <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>Al</mtext></msub></mrow></math></span> outside the dual fibres, tend to be parallel with the interface, say <span><math><mrow><msub><mrow><mo>⟨</mo><mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>10</mn></mrow><mo>⟩</mo></mrow><mrow><mtext>in</mtext><mo>−</mo><mtext>fibre</mtext></mrow></msub><mo>∥</mo><msub><mrow><mo>{</mo><mn>0001</mn><mo>}</mo></mrow><mtext>GO</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mrow><mtext>out</mtext><mo>−</mo><mtext>of</mtext><mo>−</mo><mtext>fibre</mtext></mrow></msub><mo>∥</mo><msub><mrow><mo>{</mo><mn>0001</mn><mo>}</mo></mrow><mtext>GO</mtext></msub></mrow></math></span>. The formation mechanisms were investigated in detail and attributed to the influence of graphene to both the dislocation slip and dynamic recrystallization during mechanical processing at elevated temperature. In addition, molecular dynamics simulations show that the alignment of <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>Al</mtext></msub><mo>∥</mo><msub><mrow><mo>{</mo><mn>0001</mn><mo>}</mo></mrow><mtext>GO</mtext></msub></mrow></math></span> facilitates the dissociation of full dislocation to Shockley partials at interface, relieving mismatch stress and significantly improving the mechanical properties of the composite. These findings highlight the potential of GO to tailor microstructures and strengthen metal matrix composites.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"245 ","pages":"Article 120792"},"PeriodicalIF":11.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced mechanical properties of graphene oxide reinforced aluminum with lamellar microstructure and crystallographic alignment\",\"authors\":\"Liu Chen , Zhencheng Li , Shaojiu Yan , Hubin Luo , Xingwu Li , Aixue Sha\",\"doi\":\"10.1016/j.carbon.2025.120792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A lamellar microstructure with crystallographic alignment was achieved in graphene oxide (GO) reinforced aluminum (Al) composites fabricated via powder metallurgy and mechanical processing. The addition of 1.0 wt% GO nearly doubled the tensile yield stress compared to the GO-free counterpart, with a slight reduction in uniform elongation from 12 % to 10 %. Electron back-scattered diffraction analysis revealed a crystallographic relationship between the GO layers and the aluminum matrix, where the <span><math><mrow><msub><mrow><mo>⟨</mo><mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>10</mn></mrow><mo>⟩</mo></mrow><mtext>Al</mtext></msub></mrow></math></span> in both the <span><math><mrow><mo>⟨</mo><mn>111</mn><mo>⟩</mo></mrow></math></span> and <span><math><mrow><mo>⟨</mo><mn>001</mn><mo>⟩</mo></mrow></math></span> fibres, as well as the <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>Al</mtext></msub></mrow></math></span> outside the dual fibres, tend to be parallel with the interface, say <span><math><mrow><msub><mrow><mo>⟨</mo><mrow><mover><mn>1</mn><mo>‾</mo></mover><mn>10</mn></mrow><mo>⟩</mo></mrow><mrow><mtext>in</mtext><mo>−</mo><mtext>fibre</mtext></mrow></msub><mo>∥</mo><msub><mrow><mo>{</mo><mn>0001</mn><mo>}</mo></mrow><mtext>GO</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mrow><mtext>out</mtext><mo>−</mo><mtext>of</mtext><mo>−</mo><mtext>fibre</mtext></mrow></msub><mo>∥</mo><msub><mrow><mo>{</mo><mn>0001</mn><mo>}</mo></mrow><mtext>GO</mtext></msub></mrow></math></span>. The formation mechanisms were investigated in detail and attributed to the influence of graphene to both the dislocation slip and dynamic recrystallization during mechanical processing at elevated temperature. In addition, molecular dynamics simulations show that the alignment of <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>Al</mtext></msub><mo>∥</mo><msub><mrow><mo>{</mo><mn>0001</mn><mo>}</mo></mrow><mtext>GO</mtext></msub></mrow></math></span> facilitates the dissociation of full dislocation to Shockley partials at interface, relieving mismatch stress and significantly improving the mechanical properties of the composite. These findings highlight the potential of GO to tailor microstructures and strengthen metal matrix composites.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"245 \",\"pages\":\"Article 120792\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325008085\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325008085","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced mechanical properties of graphene oxide reinforced aluminum with lamellar microstructure and crystallographic alignment
A lamellar microstructure with crystallographic alignment was achieved in graphene oxide (GO) reinforced aluminum (Al) composites fabricated via powder metallurgy and mechanical processing. The addition of 1.0 wt% GO nearly doubled the tensile yield stress compared to the GO-free counterpart, with a slight reduction in uniform elongation from 12 % to 10 %. Electron back-scattered diffraction analysis revealed a crystallographic relationship between the GO layers and the aluminum matrix, where the in both the and fibres, as well as the outside the dual fibres, tend to be parallel with the interface, say and . The formation mechanisms were investigated in detail and attributed to the influence of graphene to both the dislocation slip and dynamic recrystallization during mechanical processing at elevated temperature. In addition, molecular dynamics simulations show that the alignment of facilitates the dissociation of full dislocation to Shockley partials at interface, relieving mismatch stress and significantly improving the mechanical properties of the composite. These findings highlight the potential of GO to tailor microstructures and strengthen metal matrix composites.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.