{"title":"SCORE:一个用于足球赛事预测的卷积方法","authors":"Rodrigo Alves","doi":"10.1016/j.ijforecast.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Football (also known as soccer or association football) is the most popular sport in the world. It is a blend of skill and luck, making it highly unpredictable. To address this unpredictability, there has been a surge in popularity over the past decade in employing machine learning techniques<span><span> for forecasting football-related features. This trend aligns with the growing professionalism in football analytics. Despite this progress, the existing body of work remains in its early stages, lacking the depth required to capture the intricate nuances of the sport. In this study, we introduce a convolutional approach designed to predict the occurrence of the next event in a football match, such as a goal or a corner kick, relying solely on easy-to-access past events for predictions. Our methodology adopts an online approach, meaning predictions can be computed during a live match. To validate our approach, we conduct a comprehensive evaluation against five </span>baseline models, utilizing data from various elite European football leagues. Additionally, an ablation study is performed to understand the underlying mechanisms of our method. Finally, we present practical applications and interpretable aspects of our proposed approach.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1636-1652"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCORE: A convolutional approach for football event forecasting\",\"authors\":\"Rodrigo Alves\",\"doi\":\"10.1016/j.ijforecast.2025.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Football (also known as soccer or association football) is the most popular sport in the world. It is a blend of skill and luck, making it highly unpredictable. To address this unpredictability, there has been a surge in popularity over the past decade in employing machine learning techniques<span><span> for forecasting football-related features. This trend aligns with the growing professionalism in football analytics. Despite this progress, the existing body of work remains in its early stages, lacking the depth required to capture the intricate nuances of the sport. In this study, we introduce a convolutional approach designed to predict the occurrence of the next event in a football match, such as a goal or a corner kick, relying solely on easy-to-access past events for predictions. Our methodology adopts an online approach, meaning predictions can be computed during a live match. To validate our approach, we conduct a comprehensive evaluation against five </span>baseline models, utilizing data from various elite European football leagues. Additionally, an ablation study is performed to understand the underlying mechanisms of our method. Finally, we present practical applications and interpretable aspects of our proposed approach.</span></div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1636-1652\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207025000111\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207025000111","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
SCORE: A convolutional approach for football event forecasting
Football (also known as soccer or association football) is the most popular sport in the world. It is a blend of skill and luck, making it highly unpredictable. To address this unpredictability, there has been a surge in popularity over the past decade in employing machine learning techniques for forecasting football-related features. This trend aligns with the growing professionalism in football analytics. Despite this progress, the existing body of work remains in its early stages, lacking the depth required to capture the intricate nuances of the sport. In this study, we introduce a convolutional approach designed to predict the occurrence of the next event in a football match, such as a goal or a corner kick, relying solely on easy-to-access past events for predictions. Our methodology adopts an online approach, meaning predictions can be computed during a live match. To validate our approach, we conduct a comprehensive evaluation against five baseline models, utilizing data from various elite European football leagues. Additionally, an ablation study is performed to understand the underlying mechanisms of our method. Finally, we present practical applications and interpretable aspects of our proposed approach.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.