{"title":"用机器学习预测澳大利亚联邦选举席位","authors":"John ‘Jack’ Collins","doi":"10.1016/j.ijforecast.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>I expand the international literature on election forecasting with the first application of machine learning (ML) in the Australian context. I apply these models to five elections from 2010 to 2022 and compare them with the dominant forecasting tool in Australia, the Mackerras pendulum. I evaluate these models’ accuracy in predicting the winning party for each electoral seat and estimating the total number of seats won by each party. Pendulum forecasts corrected with an extra trees model that incorporates state effects, seat-level unemployment rate, and vote share history predict up to 15 additional seats correctly six to three months before each election. The traditional pendulum is increasingly strained by polling errors and a larger crossbench. New modeling techniques will only emerge through experimentation. This study demonstrates the potential for ML-based election forecasting in Australia and provides a starting point for further efforts to surpass the pendulum.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1620-1635"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Australian federal electoral seats with machine learning\",\"authors\":\"John ‘Jack’ Collins\",\"doi\":\"10.1016/j.ijforecast.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>I expand the international literature on election forecasting with the first application of machine learning (ML) in the Australian context. I apply these models to five elections from 2010 to 2022 and compare them with the dominant forecasting tool in Australia, the Mackerras pendulum. I evaluate these models’ accuracy in predicting the winning party for each electoral seat and estimating the total number of seats won by each party. Pendulum forecasts corrected with an extra trees model that incorporates state effects, seat-level unemployment rate, and vote share history predict up to 15 additional seats correctly six to three months before each election. The traditional pendulum is increasingly strained by polling errors and a larger crossbench. New modeling techniques will only emerge through experimentation. This study demonstrates the potential for ML-based election forecasting in Australia and provides a starting point for further efforts to surpass the pendulum.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1620-1635\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207025000093\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207025000093","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Predicting Australian federal electoral seats with machine learning
I expand the international literature on election forecasting with the first application of machine learning (ML) in the Australian context. I apply these models to five elections from 2010 to 2022 and compare them with the dominant forecasting tool in Australia, the Mackerras pendulum. I evaluate these models’ accuracy in predicting the winning party for each electoral seat and estimating the total number of seats won by each party. Pendulum forecasts corrected with an extra trees model that incorporates state effects, seat-level unemployment rate, and vote share history predict up to 15 additional seats correctly six to three months before each election. The traditional pendulum is increasingly strained by polling errors and a larger crossbench. New modeling techniques will only emerge through experimentation. This study demonstrates the potential for ML-based election forecasting in Australia and provides a starting point for further efforts to surpass the pendulum.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.