{"title":"用贝叶斯var预测宏观经济数据:稀疏还是密集?视情况而定!","authors":"Luis Gruber, Gregor Kastner","doi":"10.1016/j.ijforecast.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Vector autoregressions (VARs) are widely applied when it comes to modeling and forecasting macroeconomic variables. In high dimensions, however, they are prone to overfitting. Bayesian methods—more concretely, shrinkage priors—have been shown to be successful at improving prediction performance. In the present paper, we introduce the semi-global framework, in which we replace the traditional global shrinkage parameter with group-specific shrinkage parameters. We show how this framework can be applied to various shrinkage priors, such as global–local priors and stochastic search variable selection priors. We demonstrate the virtues of the proposed framework in an extensive simulation study and in an empirical application forecasting data on the US economy. Further, we shed more light on the ongoing ‘illusion of sparsity’ debate, finding that forecasting performances under sparse/dense priors vary across evaluated economic variables and across time frames. Dynamic model averaging, however, can combine the merits of both worlds.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1589-1619"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!\",\"authors\":\"Luis Gruber, Gregor Kastner\",\"doi\":\"10.1016/j.ijforecast.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vector autoregressions (VARs) are widely applied when it comes to modeling and forecasting macroeconomic variables. In high dimensions, however, they are prone to overfitting. Bayesian methods—more concretely, shrinkage priors—have been shown to be successful at improving prediction performance. In the present paper, we introduce the semi-global framework, in which we replace the traditional global shrinkage parameter with group-specific shrinkage parameters. We show how this framework can be applied to various shrinkage priors, such as global–local priors and stochastic search variable selection priors. We demonstrate the virtues of the proposed framework in an extensive simulation study and in an empirical application forecasting data on the US economy. Further, we shed more light on the ongoing ‘illusion of sparsity’ debate, finding that forecasting performances under sparse/dense priors vary across evaluated economic variables and across time frames. Dynamic model averaging, however, can combine the merits of both worlds.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1589-1619\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207025000081\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207025000081","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!
Vector autoregressions (VARs) are widely applied when it comes to modeling and forecasting macroeconomic variables. In high dimensions, however, they are prone to overfitting. Bayesian methods—more concretely, shrinkage priors—have been shown to be successful at improving prediction performance. In the present paper, we introduce the semi-global framework, in which we replace the traditional global shrinkage parameter with group-specific shrinkage parameters. We show how this framework can be applied to various shrinkage priors, such as global–local priors and stochastic search variable selection priors. We demonstrate the virtues of the proposed framework in an extensive simulation study and in an empirical application forecasting data on the US economy. Further, we shed more light on the ongoing ‘illusion of sparsity’ debate, finding that forecasting performances under sparse/dense priors vary across evaluated economic variables and across time frames. Dynamic model averaging, however, can combine the merits of both worlds.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.