Adriana C. da Silva , Thiago S. da Sena , Igor G.S. Oliveira , Fausto E. Bimbi Junior , Oswaldo C. Junior , Robson S. Souto , Michael M. Baruch , João P.P. Encide , Kathia M. Honorio , Marcos R.V. Lanza , Adriana E. de Carvalho , Willyam R.P. Barros
{"title":"巴西作物中Diuron的电化学测定:f-MWCNT@Chi-AgNPs纳米复合材料修饰的丝网印刷电极用于食品安全监测","authors":"Adriana C. da Silva , Thiago S. da Sena , Igor G.S. Oliveira , Fausto E. Bimbi Junior , Oswaldo C. Junior , Robson S. Souto , Michael M. Baruch , João P.P. Encide , Kathia M. Honorio , Marcos R.V. Lanza , Adriana E. de Carvalho , Willyam R.P. Barros","doi":"10.1016/j.flatc.2025.100929","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an inexpensive, easy-to-make screen-printed electrochemical (SPE) sensor was developed and applied for diuron (DIU) detection in Brazilian crops. The SPE was modified with a hybrid nanocomposite, which consisted of functionalized carbon nanotubes, chitosan and silver nanoparticles (<em>f-</em>MWCNT@Chi-AgNPs). The AgNPs were obtained through a simple and rapid green synthesis using lemon leaf extract as a reducing agent. The sensor exhibits irreversible electrochemical behavior with a diffusion-controlled response. The SPE-modified sensor when applied for DIU detection, was obtained a wide linear range (0.02–50.0 μM), a low LOD (0.005 μM), and a high sensitivity. Experimental variables, such as pH and scan rate were optimized, with pH 7.0 identified as the optimal medium. The modified SPE sensor demonstrated excellent selectivity against common interferents, operational stability, and no memory effect. The DFT analysis, from the M06-2X and B3LYP functionals, and the Def2-SVP basis set, reveals that the DIU molecule is a moderate electrophile. These data suggest the SPE/<em>f-</em>MWCNT@Chi-AgNPs are both highly reactive and stable for DIU oxidation. Its practical applicability was confirmed through the analysis of real samples (orange fruit, orange juice, tangerine, sugarcane and tomato), where recovery rates between 100.09 and 110.61 % were obtained, with RSD below 4.0 %. The combination of conductive materials with porous structure and sustainable synthesis yielded an efficient analytical platform. The proposed sensor can be employed as a viable, rapid and effective alternative tool for monitoring pesticide residues in complex matrices, with strong potential for application in environmental and food quality analysis.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"54 ","pages":"Article 100929"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical determination of Diuron in Brazilian crops: f-MWCNT@Chi-AgNPs nanocomposite-modified screen-printed electrode for food safety monitoring\",\"authors\":\"Adriana C. da Silva , Thiago S. da Sena , Igor G.S. Oliveira , Fausto E. Bimbi Junior , Oswaldo C. Junior , Robson S. Souto , Michael M. Baruch , João P.P. Encide , Kathia M. Honorio , Marcos R.V. Lanza , Adriana E. de Carvalho , Willyam R.P. Barros\",\"doi\":\"10.1016/j.flatc.2025.100929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, an inexpensive, easy-to-make screen-printed electrochemical (SPE) sensor was developed and applied for diuron (DIU) detection in Brazilian crops. The SPE was modified with a hybrid nanocomposite, which consisted of functionalized carbon nanotubes, chitosan and silver nanoparticles (<em>f-</em>MWCNT@Chi-AgNPs). The AgNPs were obtained through a simple and rapid green synthesis using lemon leaf extract as a reducing agent. The sensor exhibits irreversible electrochemical behavior with a diffusion-controlled response. The SPE-modified sensor when applied for DIU detection, was obtained a wide linear range (0.02–50.0 μM), a low LOD (0.005 μM), and a high sensitivity. Experimental variables, such as pH and scan rate were optimized, with pH 7.0 identified as the optimal medium. The modified SPE sensor demonstrated excellent selectivity against common interferents, operational stability, and no memory effect. The DFT analysis, from the M06-2X and B3LYP functionals, and the Def2-SVP basis set, reveals that the DIU molecule is a moderate electrophile. These data suggest the SPE/<em>f-</em>MWCNT@Chi-AgNPs are both highly reactive and stable for DIU oxidation. Its practical applicability was confirmed through the analysis of real samples (orange fruit, orange juice, tangerine, sugarcane and tomato), where recovery rates between 100.09 and 110.61 % were obtained, with RSD below 4.0 %. The combination of conductive materials with porous structure and sustainable synthesis yielded an efficient analytical platform. The proposed sensor can be employed as a viable, rapid and effective alternative tool for monitoring pesticide residues in complex matrices, with strong potential for application in environmental and food quality analysis.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"54 \",\"pages\":\"Article 100929\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725001230\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725001230","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical determination of Diuron in Brazilian crops: f-MWCNT@Chi-AgNPs nanocomposite-modified screen-printed electrode for food safety monitoring
In this study, an inexpensive, easy-to-make screen-printed electrochemical (SPE) sensor was developed and applied for diuron (DIU) detection in Brazilian crops. The SPE was modified with a hybrid nanocomposite, which consisted of functionalized carbon nanotubes, chitosan and silver nanoparticles (f-MWCNT@Chi-AgNPs). The AgNPs were obtained through a simple and rapid green synthesis using lemon leaf extract as a reducing agent. The sensor exhibits irreversible electrochemical behavior with a diffusion-controlled response. The SPE-modified sensor when applied for DIU detection, was obtained a wide linear range (0.02–50.0 μM), a low LOD (0.005 μM), and a high sensitivity. Experimental variables, such as pH and scan rate were optimized, with pH 7.0 identified as the optimal medium. The modified SPE sensor demonstrated excellent selectivity against common interferents, operational stability, and no memory effect. The DFT analysis, from the M06-2X and B3LYP functionals, and the Def2-SVP basis set, reveals that the DIU molecule is a moderate electrophile. These data suggest the SPE/f-MWCNT@Chi-AgNPs are both highly reactive and stable for DIU oxidation. Its practical applicability was confirmed through the analysis of real samples (orange fruit, orange juice, tangerine, sugarcane and tomato), where recovery rates between 100.09 and 110.61 % were obtained, with RSD below 4.0 %. The combination of conductive materials with porous structure and sustainable synthesis yielded an efficient analytical platform. The proposed sensor can be employed as a viable, rapid and effective alternative tool for monitoring pesticide residues in complex matrices, with strong potential for application in environmental and food quality analysis.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)