C3N4/NiO/ZnO三元异质结纳米复合材料高效电荷分离增强太阳驱动析氢

Abu Summama Sadavi Bilal , Uzma Bilal , Taimoor Abbas , R. Roopashree , Egambergan Khudoynazarov , Murodjon Yaxshimuratov , Krishan Kumar Sah , Qaiser Abbas , Rida Fatima , Hafiz Muhammad Noman
{"title":"C3N4/NiO/ZnO三元异质结纳米复合材料高效电荷分离增强太阳驱动析氢","authors":"Abu Summama Sadavi Bilal ,&nbsp;Uzma Bilal ,&nbsp;Taimoor Abbas ,&nbsp;R. Roopashree ,&nbsp;Egambergan Khudoynazarov ,&nbsp;Murodjon Yaxshimuratov ,&nbsp;Krishan Kumar Sah ,&nbsp;Qaiser Abbas ,&nbsp;Rida Fatima ,&nbsp;Hafiz Muhammad Noman","doi":"10.1016/j.nxener.2025.100417","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient photocatalysts for solar-driven hydrogen production remains a critical challenge in renewable energy research. This study presents a novel C<sub>3</sub>N<sub>4</sub>/NiO/ZnO (CNZO) ternary nanocomposite synthesized via a facile co-precipitation method for enhanced photocatalytic (PC) hydrogen (H<sub>2</sub>) evolution under visible light irradiation. The structural and morphological properties of the nanocomposite were systematically characterized using X-ray Diffraction (XRD), Raman spectroscopy, and Scanning Electron Microscopy (SEM), confirming the successful integration of C<sub>3</sub>N<sub>4</sub> with NiO and ZnO. Optical studies, including UV–vis absorbance and photoluminescence (PL) spectroscopy, revealed improved visible-light absorption and reduced charge recombination in the ternary system compared to its individual components. The optimized photocatalyst demonstrated exceptional hydrogen production performance, achieving a rate of 2.87 mmolg<sup>−1</sup>h<sup>−1</sup>, which was significantly higher than that of binary composites (C<sub>3</sub>N<sub>4</sub>/NiO, C<sub>3</sub>N<sub>4</sub>/ZnO, and NiO/ZnO) and pristine semiconductors. The improved activity was related to the synergistic effects of efficient charge separation at the heterojunction interfaces and extended light absorption. Furthermore, the photocatalyst exhibited excellent stability over multiple cycles, as confirmed by life cycle assessment. These findings highlight the potential of the CNZO ternary nanocomposite as a sustainable and high-performance photocatalyst for solar hydrogen generation, providing valuable insights for the design of advanced photocatalytic systems.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100417"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced solar-driven hydrogen evolution via C3N4/NiO/ZnO ternary heterojunction nanocomposite with efficient charge separation\",\"authors\":\"Abu Summama Sadavi Bilal ,&nbsp;Uzma Bilal ,&nbsp;Taimoor Abbas ,&nbsp;R. Roopashree ,&nbsp;Egambergan Khudoynazarov ,&nbsp;Murodjon Yaxshimuratov ,&nbsp;Krishan Kumar Sah ,&nbsp;Qaiser Abbas ,&nbsp;Rida Fatima ,&nbsp;Hafiz Muhammad Noman\",\"doi\":\"10.1016/j.nxener.2025.100417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of efficient photocatalysts for solar-driven hydrogen production remains a critical challenge in renewable energy research. This study presents a novel C<sub>3</sub>N<sub>4</sub>/NiO/ZnO (CNZO) ternary nanocomposite synthesized via a facile co-precipitation method for enhanced photocatalytic (PC) hydrogen (H<sub>2</sub>) evolution under visible light irradiation. The structural and morphological properties of the nanocomposite were systematically characterized using X-ray Diffraction (XRD), Raman spectroscopy, and Scanning Electron Microscopy (SEM), confirming the successful integration of C<sub>3</sub>N<sub>4</sub> with NiO and ZnO. Optical studies, including UV–vis absorbance and photoluminescence (PL) spectroscopy, revealed improved visible-light absorption and reduced charge recombination in the ternary system compared to its individual components. The optimized photocatalyst demonstrated exceptional hydrogen production performance, achieving a rate of 2.87 mmolg<sup>−1</sup>h<sup>−1</sup>, which was significantly higher than that of binary composites (C<sub>3</sub>N<sub>4</sub>/NiO, C<sub>3</sub>N<sub>4</sub>/ZnO, and NiO/ZnO) and pristine semiconductors. The improved activity was related to the synergistic effects of efficient charge separation at the heterojunction interfaces and extended light absorption. Furthermore, the photocatalyst exhibited excellent stability over multiple cycles, as confirmed by life cycle assessment. These findings highlight the potential of the CNZO ternary nanocomposite as a sustainable and high-performance photocatalyst for solar hydrogen generation, providing valuable insights for the design of advanced photocatalytic systems.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"9 \",\"pages\":\"Article 100417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X25001802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发用于太阳能制氢的高效光催化剂仍然是可再生能源研究中的一个关键挑战。研究了一种新型的C3N4/NiO/ZnO (CNZO)三元纳米复合材料,该材料采用易溶共沉淀法合成,在可见光照射下增强光催化(PC)析氢(H2)。利用x射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对纳米复合材料的结构和形貌进行了系统表征,证实了C3N4与NiO和ZnO的成功集成。光学研究,包括紫外-可见吸光度和光致发光(PL)光谱,表明与单个组分相比,三元体系中的可见光吸收改善,电荷重组减少。优化后的光催化剂表现出优异的产氢性能,产氢速率为2.87 mmolg−1h−1,显著高于二元复合材料(C3N4/NiO、C3N4/ZnO和NiO/ZnO)和原始半导体。活性的提高与异质结界面的有效电荷分离和扩大光吸收的协同作用有关。此外,该光催化剂在多个循环中表现出优异的稳定性,这一点得到了生命周期评估的证实。这些发现突出了CNZO三元纳米复合材料作为可持续和高性能太阳能制氢光催化剂的潜力,为设计先进的光催化系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced solar-driven hydrogen evolution via C3N4/NiO/ZnO ternary heterojunction nanocomposite with efficient charge separation

Enhanced solar-driven hydrogen evolution via C3N4/NiO/ZnO ternary heterojunction nanocomposite with efficient charge separation
The development of efficient photocatalysts for solar-driven hydrogen production remains a critical challenge in renewable energy research. This study presents a novel C3N4/NiO/ZnO (CNZO) ternary nanocomposite synthesized via a facile co-precipitation method for enhanced photocatalytic (PC) hydrogen (H2) evolution under visible light irradiation. The structural and morphological properties of the nanocomposite were systematically characterized using X-ray Diffraction (XRD), Raman spectroscopy, and Scanning Electron Microscopy (SEM), confirming the successful integration of C3N4 with NiO and ZnO. Optical studies, including UV–vis absorbance and photoluminescence (PL) spectroscopy, revealed improved visible-light absorption and reduced charge recombination in the ternary system compared to its individual components. The optimized photocatalyst demonstrated exceptional hydrogen production performance, achieving a rate of 2.87 mmolg−1h−1, which was significantly higher than that of binary composites (C3N4/NiO, C3N4/ZnO, and NiO/ZnO) and pristine semiconductors. The improved activity was related to the synergistic effects of efficient charge separation at the heterojunction interfaces and extended light absorption. Furthermore, the photocatalyst exhibited excellent stability over multiple cycles, as confirmed by life cycle assessment. These findings highlight the potential of the CNZO ternary nanocomposite as a sustainable and high-performance photocatalyst for solar hydrogen generation, providing valuable insights for the design of advanced photocatalytic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信