{"title":"从低次原始多项式求长m序列","authors":"Dimitri Kagaris","doi":"10.1016/j.dam.2025.08.058","DOIUrl":null,"url":null,"abstract":"<div><div>Maximum-length sequences of length <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> (m-sequences) are typically obtained by starting from a primitive polynomial of degree <span><math><mi>n</mi></math></span> over <span><math><mrow><mi>G</mi><mi>F</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and configuring a Linear Feedback Shift Register (LFSR) based on that polynomial. In this study, we investigate the generation of <em>long</em> m-sequences based on a primitive polynomial of <em>low</em> degree. Specifically, we investigate a very simple form of an LFSR structure, referred to as <em>Two-Multiplier Split LFSR (2M-SLFSR)</em>, that consists of <span><math><mi>m</mi></math></span>\n <span><math><mi>δ</mi></math></span>-bit cells and is based on a single low-degree primitive polynomial of degree <span><math><mrow><mi>δ</mi><mo>≥</mo><mn>2</mn></mrow></math></span> over <span><math><mrow><mi>G</mi><mi>F</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and which can generate, with proper configuration, an m-sequence of length <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mi>δ</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. For example, we show that starting from the primitive polynomial <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></math></span> over <span><math><mrow><mi>G</mi><mi>F</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, a 2M-SLFSR with <span><math><mrow><mi>m</mi><mo>=</mo><mn>599</mn></mrow></math></span> 2-bit cells can be constructed that yields an m-sequence of length <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>1198</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. M-sequences of large length such as <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>512</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> obtained from low degree primitive polynomials via LFSR structures akin to 2M-SLFSR find current applications in stream ciphers like those used in SNOW-V and SNOW-Vi.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 272-287"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On obtaining long m-sequences from low-degree primitive polynomials\",\"authors\":\"Dimitri Kagaris\",\"doi\":\"10.1016/j.dam.2025.08.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maximum-length sequences of length <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> (m-sequences) are typically obtained by starting from a primitive polynomial of degree <span><math><mi>n</mi></math></span> over <span><math><mrow><mi>G</mi><mi>F</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and configuring a Linear Feedback Shift Register (LFSR) based on that polynomial. In this study, we investigate the generation of <em>long</em> m-sequences based on a primitive polynomial of <em>low</em> degree. Specifically, we investigate a very simple form of an LFSR structure, referred to as <em>Two-Multiplier Split LFSR (2M-SLFSR)</em>, that consists of <span><math><mi>m</mi></math></span>\\n <span><math><mi>δ</mi></math></span>-bit cells and is based on a single low-degree primitive polynomial of degree <span><math><mrow><mi>δ</mi><mo>≥</mo><mn>2</mn></mrow></math></span> over <span><math><mrow><mi>G</mi><mi>F</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and which can generate, with proper configuration, an m-sequence of length <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mi>δ</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. For example, we show that starting from the primitive polynomial <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></math></span> over <span><math><mrow><mi>G</mi><mi>F</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, a 2M-SLFSR with <span><math><mrow><mi>m</mi><mo>=</mo><mn>599</mn></mrow></math></span> 2-bit cells can be constructed that yields an m-sequence of length <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>1198</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. M-sequences of large length such as <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>512</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> obtained from low degree primitive polynomials via LFSR structures akin to 2M-SLFSR find current applications in stream ciphers like those used in SNOW-V and SNOW-Vi.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 272-287\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005037\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On obtaining long m-sequences from low-degree primitive polynomials
Maximum-length sequences of length (m-sequences) are typically obtained by starting from a primitive polynomial of degree over and configuring a Linear Feedback Shift Register (LFSR) based on that polynomial. In this study, we investigate the generation of long m-sequences based on a primitive polynomial of low degree. Specifically, we investigate a very simple form of an LFSR structure, referred to as Two-Multiplier Split LFSR (2M-SLFSR), that consists of
-bit cells and is based on a single low-degree primitive polynomial of degree over and which can generate, with proper configuration, an m-sequence of length . For example, we show that starting from the primitive polynomial over , a 2M-SLFSR with 2-bit cells can be constructed that yields an m-sequence of length . M-sequences of large length such as obtained from low degree primitive polynomials via LFSR structures akin to 2M-SLFSR find current applications in stream ciphers like those used in SNOW-V and SNOW-Vi.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.