圆柱形微环腔中的振荡布林克曼微极性电渗透

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shreen El-Sapa , M.S. Faltas , Kareem E. Ragab
{"title":"圆柱形微环腔中的振荡布林克曼微极性电渗透","authors":"Shreen El-Sapa ,&nbsp;M.S. Faltas ,&nbsp;Kareem E. Ragab","doi":"10.1016/j.cjph.2025.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an analytical investigation of unsteady, time-periodic flow in a hydrogel medium confined within a cylindrical microannulus, driven by both a pressure gradient and an externally applied electric field. The hydrogel is modeled as a Brinkman porous matrix saturated with a micropolar fluid. By coupling the linearized Poisson-Boltzmann equation (Debye-Hückel approximation) with the Brinkman-micropolar momentum equations, closed-form expressions are derived for the axial velocity and microrotation as functions of radial position, time, and key dimensionless parameters. The flow is shown to comprise two independent contributions: a pressure-driven component and an electroosmotic component, each influenced by specific physical mechanisms. Quantitatively, increasing the permeability resistance parameter (<span><math><mi>λ</mi></math></span>) from 0 to 10 reduces the volume flow rate by 89.64 %, the streaming function by 83.63 %, while increasing microrotation strength by 62.05 %. Raising the micropolar coupling number (<span><math><mi>c</mi></math></span>) from 0.1 to 0.9 leads to a 38.20 % decrease in flow rate, a 165.55 % increase in the streaming function, and a 28.43 % rise in microrotation. Frequency effects are especially pronounced: increasing the forcing frequency parameter (<span><math><mi>α</mi></math></span>) from 0.5 to 50 results in a 99.98 % drop in flow rate, a 100 % increase in the streaming function, and a 99.9997 % rise in microrotation. The electrokinetic width (<span><math><mi>k</mi></math></span>) is a dominant tuning parameter-doubling <span><math><mi>k</mi></math></span> from 10 to 20 leads to a 581.94 % increase in flow rate, and 315.86 % in the streaming function. The analysis also reveals how zeta potential asymmetry (<span><math><mrow><mi>β</mi><mo>≠</mo><mn>1</mn></mrow></math></span>) enables precise flow control, including reversal. All classical limiting cases-Newtonian, purely pressure-driven, and steady electroosmotic-are exactly recovered, validating the model. These findings provide quantitative guidelines for the design of hydrogel-based microfluidic systems where electrokinetic and microstructural effects critically influence transport.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"97 ","pages":"Pages 1464-1491"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory Brinkman-micropolar electroosmosis in cylindrical microannuli\",\"authors\":\"Shreen El-Sapa ,&nbsp;M.S. Faltas ,&nbsp;Kareem E. Ragab\",\"doi\":\"10.1016/j.cjph.2025.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an analytical investigation of unsteady, time-periodic flow in a hydrogel medium confined within a cylindrical microannulus, driven by both a pressure gradient and an externally applied electric field. The hydrogel is modeled as a Brinkman porous matrix saturated with a micropolar fluid. By coupling the linearized Poisson-Boltzmann equation (Debye-Hückel approximation) with the Brinkman-micropolar momentum equations, closed-form expressions are derived for the axial velocity and microrotation as functions of radial position, time, and key dimensionless parameters. The flow is shown to comprise two independent contributions: a pressure-driven component and an electroosmotic component, each influenced by specific physical mechanisms. Quantitatively, increasing the permeability resistance parameter (<span><math><mi>λ</mi></math></span>) from 0 to 10 reduces the volume flow rate by 89.64 %, the streaming function by 83.63 %, while increasing microrotation strength by 62.05 %. Raising the micropolar coupling number (<span><math><mi>c</mi></math></span>) from 0.1 to 0.9 leads to a 38.20 % decrease in flow rate, a 165.55 % increase in the streaming function, and a 28.43 % rise in microrotation. Frequency effects are especially pronounced: increasing the forcing frequency parameter (<span><math><mi>α</mi></math></span>) from 0.5 to 50 results in a 99.98 % drop in flow rate, a 100 % increase in the streaming function, and a 99.9997 % rise in microrotation. The electrokinetic width (<span><math><mi>k</mi></math></span>) is a dominant tuning parameter-doubling <span><math><mi>k</mi></math></span> from 10 to 20 leads to a 581.94 % increase in flow rate, and 315.86 % in the streaming function. The analysis also reveals how zeta potential asymmetry (<span><math><mrow><mi>β</mi><mo>≠</mo><mn>1</mn></mrow></math></span>) enables precise flow control, including reversal. All classical limiting cases-Newtonian, purely pressure-driven, and steady electroosmotic-are exactly recovered, validating the model. These findings provide quantitative guidelines for the design of hydrogel-based microfluidic systems where electrokinetic and microstructural effects critically influence transport.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"97 \",\"pages\":\"Pages 1464-1491\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325003211\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325003211","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究分析了在压力梯度和外加电场驱动下,水凝胶介质在圆柱形微环空中的非定常、时间周期流动。水凝胶的模型是布林克曼多孔基质饱和微极性流体。通过将线性化泊松-玻尔兹曼方程(debye - h ckel近似)与brinkman -微极动量方程耦合,导出了轴向速度和微旋转作为径向位置、时间和关键无量纲参数的函数的封闭表达式。流体由两种独立的贡献组成:压力驱动成分和电渗透成分,每一种成分都受到特定物理机制的影响。从数量上看,将渗透阻力参数λ从0增加到10,使体积流率降低89.64%,流函数降低83.63%,微旋强度提高62.05%。微极耦合数(c)由0.1提高到0.9,流量降低38.20%,流态功能提高165.55%,微旋度提高28.43%。频率效应尤其明显:将强迫频率参数(α)从0.5增加到50,导致流量下降99.98%,流函数增加100%,微旋度增加99.9997%。电动势宽度(k)是一个主要的调节参数,k从10倍增加到20倍,导致流量增加581.94%,流函数增加315.86%。分析还揭示了ζ电位不对称(β≠1)如何实现精确的流量控制,包括反转。所有经典的极限情况-牛顿,纯压力驱动,稳定电渗透-完全恢复,验证了模型。这些发现为基于水凝胶的微流体系统的设计提供了定量指导,其中电动和微观结构效应对传输有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oscillatory Brinkman-micropolar electroosmosis in cylindrical microannuli

Oscillatory Brinkman-micropolar electroosmosis in cylindrical microannuli
This study presents an analytical investigation of unsteady, time-periodic flow in a hydrogel medium confined within a cylindrical microannulus, driven by both a pressure gradient and an externally applied electric field. The hydrogel is modeled as a Brinkman porous matrix saturated with a micropolar fluid. By coupling the linearized Poisson-Boltzmann equation (Debye-Hückel approximation) with the Brinkman-micropolar momentum equations, closed-form expressions are derived for the axial velocity and microrotation as functions of radial position, time, and key dimensionless parameters. The flow is shown to comprise two independent contributions: a pressure-driven component and an electroosmotic component, each influenced by specific physical mechanisms. Quantitatively, increasing the permeability resistance parameter (λ) from 0 to 10 reduces the volume flow rate by 89.64 %, the streaming function by 83.63 %, while increasing microrotation strength by 62.05 %. Raising the micropolar coupling number (c) from 0.1 to 0.9 leads to a 38.20 % decrease in flow rate, a 165.55 % increase in the streaming function, and a 28.43 % rise in microrotation. Frequency effects are especially pronounced: increasing the forcing frequency parameter (α) from 0.5 to 50 results in a 99.98 % drop in flow rate, a 100 % increase in the streaming function, and a 99.9997 % rise in microrotation. The electrokinetic width (k) is a dominant tuning parameter-doubling k from 10 to 20 leads to a 581.94 % increase in flow rate, and 315.86 % in the streaming function. The analysis also reveals how zeta potential asymmetry (β1) enables precise flow control, including reversal. All classical limiting cases-Newtonian, purely pressure-driven, and steady electroosmotic-are exactly recovered, validating the model. These findings provide quantitative guidelines for the design of hydrogel-based microfluidic systems where electrokinetic and microstructural effects critically influence transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信