双特征增强图聚类网络

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Renda Han, Mengzhe Sun, Zeyi Li, Mengfei Li, Tianyu Hu, Zhenhua Yang, Jingxin Liu
{"title":"双特征增强图聚类网络","authors":"Renda Han,&nbsp;Mengzhe Sun,&nbsp;Zeyi Li,&nbsp;Mengfei Li,&nbsp;Tianyu Hu,&nbsp;Zhenhua Yang,&nbsp;Jingxin Liu","doi":"10.1016/j.patrec.2025.08.016","DOIUrl":null,"url":null,"abstract":"<div><div>Deep graph clustering is a fundamental method in unsupervised learning. Recently, deep clustering fusion methods relying on representation learning typically employ Auto-Encoders (AEs) and Graph Neural Networks (GNNs) to capture high-dimensional information representations of node attributes and graph structure. However, non-important graph structure information and redundant fused representations lead to a less discriminative graph representation, limiting clustering performance. To tackle this issue, we propose a Dual Feature Enhancement Graph Clustering Network (DFE-GCN). Specifically, we develop a critical node selection mechanism that calculates the importance score of each node to adjust edge weights, reducing non-important connections while enhancing important connections. Moreover, we design a heterogeneous information fusion strategy that fine-tunes the node attributes and graph structure fused layer by layer between nodes, dynamically filtering out redundant representations and forming a robust target distribution. Extensive experiments on five datasets have proven that the proposed method consistently outperforms advanced clustering methods.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"197 ","pages":"Pages 339-345"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Feature Enhancement Graph Clustering Network\",\"authors\":\"Renda Han,&nbsp;Mengzhe Sun,&nbsp;Zeyi Li,&nbsp;Mengfei Li,&nbsp;Tianyu Hu,&nbsp;Zhenhua Yang,&nbsp;Jingxin Liu\",\"doi\":\"10.1016/j.patrec.2025.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep graph clustering is a fundamental method in unsupervised learning. Recently, deep clustering fusion methods relying on representation learning typically employ Auto-Encoders (AEs) and Graph Neural Networks (GNNs) to capture high-dimensional information representations of node attributes and graph structure. However, non-important graph structure information and redundant fused representations lead to a less discriminative graph representation, limiting clustering performance. To tackle this issue, we propose a Dual Feature Enhancement Graph Clustering Network (DFE-GCN). Specifically, we develop a critical node selection mechanism that calculates the importance score of each node to adjust edge weights, reducing non-important connections while enhancing important connections. Moreover, we design a heterogeneous information fusion strategy that fine-tunes the node attributes and graph structure fused layer by layer between nodes, dynamically filtering out redundant representations and forming a robust target distribution. Extensive experiments on five datasets have proven that the proposed method consistently outperforms advanced clustering methods.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"197 \",\"pages\":\"Pages 339-345\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525002958\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002958","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度图聚类是无监督学习的一种基本方法。目前,基于表示学习的深度聚类融合方法通常采用自编码器(ae)和图神经网络(gnn)来捕获节点属性和图结构的高维信息表示。然而,不重要的图结构信息和冗余的融合表示导致图表示的判别性较差,限制了聚类性能。为了解决这个问题,我们提出了一种双特征增强图聚类网络(DFE-GCN)。具体来说,我们开发了一个关键节点选择机制,通过计算每个节点的重要性得分来调整边缘权重,减少非重要连接,增强重要连接。此外,我们设计了一种异构信息融合策略,对节点间逐层融合的节点属性和图结构进行微调,动态过滤冗余表示,形成鲁棒的目标分布。在五个数据集上的大量实验证明,该方法始终优于先进的聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Feature Enhancement Graph Clustering Network
Deep graph clustering is a fundamental method in unsupervised learning. Recently, deep clustering fusion methods relying on representation learning typically employ Auto-Encoders (AEs) and Graph Neural Networks (GNNs) to capture high-dimensional information representations of node attributes and graph structure. However, non-important graph structure information and redundant fused representations lead to a less discriminative graph representation, limiting clustering performance. To tackle this issue, we propose a Dual Feature Enhancement Graph Clustering Network (DFE-GCN). Specifically, we develop a critical node selection mechanism that calculates the importance score of each node to adjust edge weights, reducing non-important connections while enhancing important connections. Moreover, we design a heterogeneous information fusion strategy that fine-tunes the node attributes and graph structure fused layer by layer between nodes, dynamically filtering out redundant representations and forming a robust target distribution. Extensive experiments on five datasets have proven that the proposed method consistently outperforms advanced clustering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信