{"title":"Hilbert空间算子交换对的半次反常","authors":"Raúl E. Curto , Jasang Yoon","doi":"10.1016/j.bulsci.2025.103718","DOIUrl":null,"url":null,"abstract":"<div><div>We first find an explicit formula for the square root of positive <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> operator matrices with commuting entries, and then use it to define and study semi-hyponormality for commuting pairs of Hilbert space operators. For the well-known 3–parameter family <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> of 2–variable weighted shifts, we completely identify the parametric regions in the open unit cube where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is subnormal, hyponormal, semi-hyponormal, and weakly hyponormal. As a result, we describe in detail concrete sub-regions where each property holds. For instance, we identify the specific sub-region where weak hyponormality holds but semi-hyponormality does not hold, and vice versa. To accomplish this, we employ a new technique emanating from the homogeneous orthogonal decomposition of <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>. The technique allows us to reduce the study of semi-hyponormality to positivity considerations of a sequence of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> scalar matrices. It also requires a specific formula for the square root of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> scalar and operator matrices, and we obtain that along the way. As an application of our main results, we show that the Drury-Arveson shift is <em>not</em> semi-hyponormal. Taken together, the new results offer a sharp contrast between the above-mentioned properties for unilateral weighted shifts and their 2–variable counterparts.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103718"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-hyponormality of commuting pairs of Hilbert space operators\",\"authors\":\"Raúl E. Curto , Jasang Yoon\",\"doi\":\"10.1016/j.bulsci.2025.103718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We first find an explicit formula for the square root of positive <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> operator matrices with commuting entries, and then use it to define and study semi-hyponormality for commuting pairs of Hilbert space operators. For the well-known 3–parameter family <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> of 2–variable weighted shifts, we completely identify the parametric regions in the open unit cube where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is subnormal, hyponormal, semi-hyponormal, and weakly hyponormal. As a result, we describe in detail concrete sub-regions where each property holds. For instance, we identify the specific sub-region where weak hyponormality holds but semi-hyponormality does not hold, and vice versa. To accomplish this, we employ a new technique emanating from the homogeneous orthogonal decomposition of <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>. The technique allows us to reduce the study of semi-hyponormality to positivity considerations of a sequence of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> scalar matrices. It also requires a specific formula for the square root of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> scalar and operator matrices, and we obtain that along the way. As an application of our main results, we show that the Drury-Arveson shift is <em>not</em> semi-hyponormal. Taken together, the new results offer a sharp contrast between the above-mentioned properties for unilateral weighted shifts and their 2–variable counterparts.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103718\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001447\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001447","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Semi-hyponormality of commuting pairs of Hilbert space operators
We first find an explicit formula for the square root of positive operator matrices with commuting entries, and then use it to define and study semi-hyponormality for commuting pairs of Hilbert space operators. For the well-known 3–parameter family of 2–variable weighted shifts, we completely identify the parametric regions in the open unit cube where is subnormal, hyponormal, semi-hyponormal, and weakly hyponormal. As a result, we describe in detail concrete sub-regions where each property holds. For instance, we identify the specific sub-region where weak hyponormality holds but semi-hyponormality does not hold, and vice versa. To accomplish this, we employ a new technique emanating from the homogeneous orthogonal decomposition of . The technique allows us to reduce the study of semi-hyponormality to positivity considerations of a sequence of scalar matrices. It also requires a specific formula for the square root of scalar and operator matrices, and we obtain that along the way. As an application of our main results, we show that the Drury-Arveson shift is not semi-hyponormal. Taken together, the new results offer a sharp contrast between the above-mentioned properties for unilateral weighted shifts and their 2–variable counterparts.