金属间氢在合金PdAu上溢出的电催化末端炔半加氢反应

IF 14.9 1区 化学 Q1 Energy
Qiang Tan , Yunxia Liu , Xiaohe Tan , Yuxuan Jiang , Chenkun Su , Yuanyuan Ma , Yongquan Qu
{"title":"金属间氢在合金PdAu上溢出的电催化末端炔半加氢反应","authors":"Qiang Tan ,&nbsp;Yunxia Liu ,&nbsp;Xiaohe Tan ,&nbsp;Yuxuan Jiang ,&nbsp;Chenkun Su ,&nbsp;Yuanyuan Ma ,&nbsp;Yongquan Qu","doi":"10.1016/j.jechem.2025.08.024","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic semi-hydrogenation of alkynes offers a sustainable pathway for synthesizing functionalized olefins, yet challenges in achieving high selectivity and Faradaic efficiency at low overpotentials remain unresolved. Herein, we report bimetallic PdAu electrocatalysts (PdAu@CC) with low Pd loadings for selective semi-hydrogenation of terminal alkynes through an intermetallic hydrogen spillover pathway. The optimized PdAu@CC catalysts with a Pd molar fraction of 4 % demonstrate exceptional performance in converting acetylene benzene to vinyl benzene, achieving 97.5 % selectivity and 78.2 % Faradaic efficiency at a low potential of −0.17 V vs. RHE, outperforming monometallic Au@CC and Pd@CC. Mechanistic investigations reveal that highly dispersed Pd sites in the Au matrix efficiently dissociate water to generate active H* intermediates. Au sites activate alkynes and promote alkenes desorption, which effectively avoid over-hydrogenation of alkynes. Kinetically favorable Pd-to-Au hydrogen spillover enables selective alkynes-to-alkene hydrogenation, suppressing competitive hydrogen evolution. This work highlights the intermetallic hydrogen spillover as a strategic pathway for designing dual-active-site electrocatalysts with high performance in alkyne semi-hydrogenation.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"111 ","pages":"Pages 969-978"},"PeriodicalIF":14.9000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic semi-hydrogenation of terminal alkynes through intermetallic hydrogen spillover on alloyed PdAu\",\"authors\":\"Qiang Tan ,&nbsp;Yunxia Liu ,&nbsp;Xiaohe Tan ,&nbsp;Yuxuan Jiang ,&nbsp;Chenkun Su ,&nbsp;Yuanyuan Ma ,&nbsp;Yongquan Qu\",\"doi\":\"10.1016/j.jechem.2025.08.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrocatalytic semi-hydrogenation of alkynes offers a sustainable pathway for synthesizing functionalized olefins, yet challenges in achieving high selectivity and Faradaic efficiency at low overpotentials remain unresolved. Herein, we report bimetallic PdAu electrocatalysts (PdAu@CC) with low Pd loadings for selective semi-hydrogenation of terminal alkynes through an intermetallic hydrogen spillover pathway. The optimized PdAu@CC catalysts with a Pd molar fraction of 4 % demonstrate exceptional performance in converting acetylene benzene to vinyl benzene, achieving 97.5 % selectivity and 78.2 % Faradaic efficiency at a low potential of −0.17 V vs. RHE, outperforming monometallic Au@CC and Pd@CC. Mechanistic investigations reveal that highly dispersed Pd sites in the Au matrix efficiently dissociate water to generate active H* intermediates. Au sites activate alkynes and promote alkenes desorption, which effectively avoid over-hydrogenation of alkynes. Kinetically favorable Pd-to-Au hydrogen spillover enables selective alkynes-to-alkene hydrogenation, suppressing competitive hydrogen evolution. This work highlights the intermetallic hydrogen spillover as a strategic pathway for designing dual-active-site electrocatalysts with high performance in alkyne semi-hydrogenation.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"111 \",\"pages\":\"Pages 969-978\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625006795\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625006795","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

炔的电催化半加氢为合成功能化烯烃提供了一条可持续的途径,但在低过电位下实现高选择性和法拉第效率的挑战仍未解决。在这里,我们报道了低Pd负载的双金属PdAu电催化剂(PdAu@CC)通过金属间氢溢出途径选择性地半加氢末端炔。优化后的PdAu@CC催化剂的Pd摩尔分数为4%,在将乙炔苯转化为乙烯苯的过程中表现出优异的性能,在- 0.17 V相对于RHE的低电位下达到97.5%的选择性和78.2%的法拉第效率,优于单金属Au@CC和Pd@CC。机制研究表明,高度分散的钯位在金基质中有效地解离水,产生活性的H*中间体。金位活化烯烃,促进烯烃脱附,有效避免了烯烃的过氢化。动力学上有利的Pd-to-Au的氢溢出使选择性的炔-烯烃加氢,抑制竞争性的氢演化。本研究强调了金属间氢溢出是设计高性能炔半加氢双活性位点电催化剂的战略途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrocatalytic semi-hydrogenation of terminal alkynes through intermetallic hydrogen spillover on alloyed PdAu

Electrocatalytic semi-hydrogenation of terminal alkynes through intermetallic hydrogen spillover on alloyed PdAu
Electrocatalytic semi-hydrogenation of alkynes offers a sustainable pathway for synthesizing functionalized olefins, yet challenges in achieving high selectivity and Faradaic efficiency at low overpotentials remain unresolved. Herein, we report bimetallic PdAu electrocatalysts (PdAu@CC) with low Pd loadings for selective semi-hydrogenation of terminal alkynes through an intermetallic hydrogen spillover pathway. The optimized PdAu@CC catalysts with a Pd molar fraction of 4 % demonstrate exceptional performance in converting acetylene benzene to vinyl benzene, achieving 97.5 % selectivity and 78.2 % Faradaic efficiency at a low potential of −0.17 V vs. RHE, outperforming monometallic Au@CC and Pd@CC. Mechanistic investigations reveal that highly dispersed Pd sites in the Au matrix efficiently dissociate water to generate active H* intermediates. Au sites activate alkynes and promote alkenes desorption, which effectively avoid over-hydrogenation of alkynes. Kinetically favorable Pd-to-Au hydrogen spillover enables selective alkynes-to-alkene hydrogenation, suppressing competitive hydrogen evolution. This work highlights the intermetallic hydrogen spillover as a strategic pathway for designing dual-active-site electrocatalysts with high performance in alkyne semi-hydrogenation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信