用改进的s -膨胀法研究流化颗粒物质范德华范式的行波结构

Q1 Mathematics
Hamida Parvin , Md. Nur Alam , Md. Abdullah Bin Masud , Md. Jakir Hossen
{"title":"用改进的s -膨胀法研究流化颗粒物质范德华范式的行波结构","authors":"Hamida Parvin ,&nbsp;Md. Nur Alam ,&nbsp;Md. Abdullah Bin Masud ,&nbsp;Md. Jakir Hossen","doi":"10.1016/j.padiff.2025.101285","DOIUrl":null,"url":null,"abstract":"<div><div>This research discovers traveling wave solutions (TWSs) of the van der Waals normal form for fluidized granular matter using the modified S-expansion (MS-E) method. The model captures key behaviors such as phase transitions, clustering, and shock structures in granular flows. Applying a traveling wave transformation reduces the governing equation to a nonlinear ordinary differential equation (NODE), enabling the construction of TWSs relevant to geophysical and industrial applications. The MS-E technique is implemented to systematically derive TWSs—such as kink, bright, and dark solitons—that model density waves, shock fronts, and clustering in granular media. Comprehensive 2D, 3D, and contour plots are presented to validate and visualize the results, offering insights into wave behavior and soliton stability. This work highlights the MS-E method as a powerful tool for solving nonlinear integral and fractional partial differential equations (NLIFPDEs), with broad applications in granular physics, fluid mechanics, plasma waves, and nonlinear optics. This experiment offers a novel procedure to explore additional compound nonlinear wave phenomena by integrating the MS-E method, opening novel opportunities for additional expansions in soliton-driven knowledge. This method offers a promising pathway for future researchers to explore closed-form traveling wave solutions of other NLIFPDEs.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101285"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating traveling wave structures in the van der Waals normal form for fluidized granular matter through the modified S-expansion method\",\"authors\":\"Hamida Parvin ,&nbsp;Md. Nur Alam ,&nbsp;Md. Abdullah Bin Masud ,&nbsp;Md. Jakir Hossen\",\"doi\":\"10.1016/j.padiff.2025.101285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research discovers traveling wave solutions (TWSs) of the van der Waals normal form for fluidized granular matter using the modified S-expansion (MS-E) method. The model captures key behaviors such as phase transitions, clustering, and shock structures in granular flows. Applying a traveling wave transformation reduces the governing equation to a nonlinear ordinary differential equation (NODE), enabling the construction of TWSs relevant to geophysical and industrial applications. The MS-E technique is implemented to systematically derive TWSs—such as kink, bright, and dark solitons—that model density waves, shock fronts, and clustering in granular media. Comprehensive 2D, 3D, and contour plots are presented to validate and visualize the results, offering insights into wave behavior and soliton stability. This work highlights the MS-E method as a powerful tool for solving nonlinear integral and fractional partial differential equations (NLIFPDEs), with broad applications in granular physics, fluid mechanics, plasma waves, and nonlinear optics. This experiment offers a novel procedure to explore additional compound nonlinear wave phenomena by integrating the MS-E method, opening novel opportunities for additional expansions in soliton-driven knowledge. This method offers a promising pathway for future researchers to explore closed-form traveling wave solutions of other NLIFPDEs.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用改进的s -膨胀(MS-E)方法发现了流化颗粒物质范德华范式的行波解(TWSs)。该模型捕获了颗粒流中的相变、聚类和激波结构等关键行为。应用行波变换将控制方程简化为非线性常微分方程(NODE),从而能够构建与地球物理和工业应用相关的TWSs。MS-E技术被用于系统地推导twss,如扭结孤子、亮孤子和暗孤子,它们可以模拟密度波、激波锋和颗粒介质中的聚类。全面的2D、3D和等高线图用于验证和可视化结果,提供了对波行为和孤子稳定性的见解。这项工作突出了MS-E方法作为求解非线性积分和分数阶偏微分方程(NLIFPDEs)的强大工具,在颗粒物理,流体力学,等离子体波和非线性光学中具有广泛的应用。该实验提供了一种新的方法,通过整合质谱- e方法来探索额外的复合非线性波现象,为进一步扩展孤子驱动的知识开辟了新的机会。该方法为未来研究人员探索其他NLIFPDEs的闭行波解提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating traveling wave structures in the van der Waals normal form for fluidized granular matter through the modified S-expansion method
This research discovers traveling wave solutions (TWSs) of the van der Waals normal form for fluidized granular matter using the modified S-expansion (MS-E) method. The model captures key behaviors such as phase transitions, clustering, and shock structures in granular flows. Applying a traveling wave transformation reduces the governing equation to a nonlinear ordinary differential equation (NODE), enabling the construction of TWSs relevant to geophysical and industrial applications. The MS-E technique is implemented to systematically derive TWSs—such as kink, bright, and dark solitons—that model density waves, shock fronts, and clustering in granular media. Comprehensive 2D, 3D, and contour plots are presented to validate and visualize the results, offering insights into wave behavior and soliton stability. This work highlights the MS-E method as a powerful tool for solving nonlinear integral and fractional partial differential equations (NLIFPDEs), with broad applications in granular physics, fluid mechanics, plasma waves, and nonlinear optics. This experiment offers a novel procedure to explore additional compound nonlinear wave phenomena by integrating the MS-E method, opening novel opportunities for additional expansions in soliton-driven knowledge. This method offers a promising pathway for future researchers to explore closed-form traveling wave solutions of other NLIFPDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信