Nauman Ahmed , Sidra Ghazanfar , Zunaira , Muhammad Z. Baber , Ilyas Khan , Osama Oqilat , Wei Sin Kohh
{"title":"Estevez-Mansfield-Clarkson方程框架内孤子的相容性","authors":"Nauman Ahmed , Sidra Ghazanfar , Zunaira , Muhammad Z. Baber , Ilyas Khan , Osama Oqilat , Wei Sin Kohh","doi":"10.1016/j.padiff.2025.101286","DOIUrl":null,"url":null,"abstract":"<div><div>This work suggests single-wave solutions for the Estevez-Mansfield-Clarkson (EMC) and linked sine-Gordon equations. The shape generation process in droplet form is studied using these model equations. For accurate wave and solitary wave solutions, in addition to many mathematical and physical research methods. There is nonlinear dispersion according to the EMC equation. It is feasible to generalize the Estevez-Mansfield integrable. Precise wave solutions, including kink, solitary, rational, single, and anti-kink, may be obtained by modifying the generalized exponential rational function technique. These changes may be advantageous in several scientific and technological domains. A novel approach to the precise solution of nonlinear partial differential equations is presented in this paper. The strategy’s main objective is to increase the applicability of the exponential rational function technique.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101286"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Campatibility of solitons within the frame work of Estevez-Mansfield-Clarkson equation\",\"authors\":\"Nauman Ahmed , Sidra Ghazanfar , Zunaira , Muhammad Z. Baber , Ilyas Khan , Osama Oqilat , Wei Sin Kohh\",\"doi\":\"10.1016/j.padiff.2025.101286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work suggests single-wave solutions for the Estevez-Mansfield-Clarkson (EMC) and linked sine-Gordon equations. The shape generation process in droplet form is studied using these model equations. For accurate wave and solitary wave solutions, in addition to many mathematical and physical research methods. There is nonlinear dispersion according to the EMC equation. It is feasible to generalize the Estevez-Mansfield integrable. Precise wave solutions, including kink, solitary, rational, single, and anti-kink, may be obtained by modifying the generalized exponential rational function technique. These changes may be advantageous in several scientific and technological domains. A novel approach to the precise solution of nonlinear partial differential equations is presented in this paper. The strategy’s main objective is to increase the applicability of the exponential rational function technique.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266681812500213X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266681812500213X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Campatibility of solitons within the frame work of Estevez-Mansfield-Clarkson equation
This work suggests single-wave solutions for the Estevez-Mansfield-Clarkson (EMC) and linked sine-Gordon equations. The shape generation process in droplet form is studied using these model equations. For accurate wave and solitary wave solutions, in addition to many mathematical and physical research methods. There is nonlinear dispersion according to the EMC equation. It is feasible to generalize the Estevez-Mansfield integrable. Precise wave solutions, including kink, solitary, rational, single, and anti-kink, may be obtained by modifying the generalized exponential rational function technique. These changes may be advantageous in several scientific and technological domains. A novel approach to the precise solution of nonlinear partial differential equations is presented in this paper. The strategy’s main objective is to increase the applicability of the exponential rational function technique.