高度不对称润滑油+合成制冷剂混合物的预测粘度模型

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Kai Kang*, Shu Yang, Yaxiu Gu and Xiaoxian Yang*, 
{"title":"高度不对称润滑油+合成制冷剂混合物的预测粘度模型","authors":"Kai Kang*,&nbsp;Shu Yang,&nbsp;Yaxiu Gu and Xiaoxian Yang*,&nbsp;","doi":"10.1021/acs.iecr.5c00334","DOIUrl":null,"url":null,"abstract":"<p >Lubricant oil is critical in refrigeration and heat pump systems, where precise viscosity models for oil + refrigerant mixtures are essential for reliable analysis. Commercial lubricants are complex mixtures with unknown compositions, and their viscosity typically exceeds that of refrigerants by 3 orders of magnitude, causing asymmetric behavior that hinders physical modeling. We propose a novel framework integrating the PC-SAFT EoS with residual entropy scaling (RES). Treating lubricant as a quasi-pure fluid, PC-SAFT characterizes mixture thermodynamics: density and bubble point pressure show 2% and 8% mean absolute deviations vs experimental data. For viscosity modeling, RES parameters for quasi-pure oils are determined using ambient-pressure data, and no additional adjustable parameters are needed for mixtures. The model achieves a 16% absolute average relative deviation from experimental viscosity, with a MATLAB package provided in Supporting Information.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 36","pages":"17865–17877"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5c00334","citationCount":"0","resultStr":"{\"title\":\"A Predictive Viscosity Model for Highly Asymmetric Lubricant Oil + Synthetic Refrigerant Mixtures\",\"authors\":\"Kai Kang*,&nbsp;Shu Yang,&nbsp;Yaxiu Gu and Xiaoxian Yang*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.5c00334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lubricant oil is critical in refrigeration and heat pump systems, where precise viscosity models for oil + refrigerant mixtures are essential for reliable analysis. Commercial lubricants are complex mixtures with unknown compositions, and their viscosity typically exceeds that of refrigerants by 3 orders of magnitude, causing asymmetric behavior that hinders physical modeling. We propose a novel framework integrating the PC-SAFT EoS with residual entropy scaling (RES). Treating lubricant as a quasi-pure fluid, PC-SAFT characterizes mixture thermodynamics: density and bubble point pressure show 2% and 8% mean absolute deviations vs experimental data. For viscosity modeling, RES parameters for quasi-pure oils are determined using ambient-pressure data, and no additional adjustable parameters are needed for mixtures. The model achieves a 16% absolute average relative deviation from experimental viscosity, with a MATLAB package provided in Supporting Information.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 36\",\"pages\":\"17865–17877\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5c00334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00334\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00334","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

润滑油在制冷和热泵系统中是至关重要的,在这些系统中,油+制冷剂混合物的精确粘度模型对于可靠的分析至关重要。商业润滑油是成分未知的复杂混合物,其粘度通常超过制冷剂3个数量级,导致不对称行为,阻碍了物理建模。我们提出了一个集成PC-SAFT EoS和残差熵缩放(RES)的新框架。PC-SAFT将润滑油视为准纯流体,具有混合热力学特征:密度和泡点压力与实验数据的平均绝对偏差分别为2%和8%。对于粘度建模,准纯油的RES参数是使用环境压力数据确定的,对于混合物不需要额外的可调参数。该模型与实验粘度的绝对平均相对偏差为16%,并在辅助资料中提供了MATLAB软件包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predictive Viscosity Model for Highly Asymmetric Lubricant Oil + Synthetic Refrigerant Mixtures

Lubricant oil is critical in refrigeration and heat pump systems, where precise viscosity models for oil + refrigerant mixtures are essential for reliable analysis. Commercial lubricants are complex mixtures with unknown compositions, and their viscosity typically exceeds that of refrigerants by 3 orders of magnitude, causing asymmetric behavior that hinders physical modeling. We propose a novel framework integrating the PC-SAFT EoS with residual entropy scaling (RES). Treating lubricant as a quasi-pure fluid, PC-SAFT characterizes mixture thermodynamics: density and bubble point pressure show 2% and 8% mean absolute deviations vs experimental data. For viscosity modeling, RES parameters for quasi-pure oils are determined using ambient-pressure data, and no additional adjustable parameters are needed for mixtures. The model achieves a 16% absolute average relative deviation from experimental viscosity, with a MATLAB package provided in Supporting Information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信