LLZO固态电解质及其活性化合物的标准化XPS和HAXPES分析

IF 6.5 Q2 CHEMISTRY, PHYSICAL
Huanyu Zhang, Lars P. H. Jeurgens*, Claudia Cancellieri, Jaka Sivavec, Maksym V. Kovalenko* and Kostiantyn V. Kravchyk*, 
{"title":"LLZO固态电解质及其活性化合物的标准化XPS和HAXPES分析","authors":"Huanyu Zhang,&nbsp;Lars P. H. Jeurgens*,&nbsp;Claudia Cancellieri,&nbsp;Jaka Sivavec,&nbsp;Maksym V. Kovalenko* and Kostiantyn V. Kravchyk*,&nbsp;","doi":"10.1021/acsmaterialsau.4c00174","DOIUrl":null,"url":null,"abstract":"<p >Surface contamination of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is a significant challenge that impedes its use as a nonflammable and nontoxic solid-state electrolyte in high energy density, temperature-tolerant Li metal solid-state batteries. This work presents detailed dual-beam lab-based XPS/HAXPES analyses of the LLZO surface, complemented by studying reference samples such as Li, Li<sub>2</sub>O, LiOH, Li<sub>2</sub>CO<sub>3</sub>, La<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, and La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>. The objective is to establish baseline reference data, binding energy (BE) positions and more robust chemical shifts, for unambiguously identifying potential surface contaminants and surface reaction layers, for example, as a function of the synthesis and surface treatment conditions. Furthermore, the established procedures for the calibration and charge correction of the XPS and HAXPES energy scales are proposed, as is essential for comparing results across different laboratories and for different incident X-ray sources and spectrometer setups. While lab-based HAXPES analysis of LLZO surfaces is still at its infancy, it is proven to be a very powerful tool in addition to conventional XPS for nondestructively resolving in-depth inhomogeneities in the composition of LLZO surfaces up to probing depths in the range of 20–30 nm.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 5","pages":"785–797"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.4c00174","citationCount":"0","resultStr":"{\"title\":\"Standardizing XPS and HAXPES Analyses of LLZO Solid-State Electrolytes and Their Reactive Compounds\",\"authors\":\"Huanyu Zhang,&nbsp;Lars P. H. Jeurgens*,&nbsp;Claudia Cancellieri,&nbsp;Jaka Sivavec,&nbsp;Maksym V. Kovalenko* and Kostiantyn V. Kravchyk*,&nbsp;\",\"doi\":\"10.1021/acsmaterialsau.4c00174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Surface contamination of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is a significant challenge that impedes its use as a nonflammable and nontoxic solid-state electrolyte in high energy density, temperature-tolerant Li metal solid-state batteries. This work presents detailed dual-beam lab-based XPS/HAXPES analyses of the LLZO surface, complemented by studying reference samples such as Li, Li<sub>2</sub>O, LiOH, Li<sub>2</sub>CO<sub>3</sub>, La<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, and La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>. The objective is to establish baseline reference data, binding energy (BE) positions and more robust chemical shifts, for unambiguously identifying potential surface contaminants and surface reaction layers, for example, as a function of the synthesis and surface treatment conditions. Furthermore, the established procedures for the calibration and charge correction of the XPS and HAXPES energy scales are proposed, as is essential for comparing results across different laboratories and for different incident X-ray sources and spectrometer setups. While lab-based HAXPES analysis of LLZO surfaces is still at its infancy, it is proven to be a very powerful tool in addition to conventional XPS for nondestructively resolving in-depth inhomogeneities in the composition of LLZO surfaces up to probing depths in the range of 20–30 nm.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 5\",\"pages\":\"785–797\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.4c00174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Li7La3Zr2O12 (LLZO)的表面污染是阻碍其作为高能量密度、耐高温锂金属固态电池中不易燃、无毒固态电解质使用的重大挑战。这项工作详细介绍了基于实验室的双光束XPS/HAXPES对LLZO表面的分析,并辅以研究了参考样品,如Li, Li2O, LiOH, Li2CO3, La2O3, ZrO2和La2Zr2O7。目标是建立基线参考数据,结合能(BE)位置和更强大的化学位移,以明确识别潜在的表面污染物和表面反应层,例如,作为合成和表面处理条件的函数。此外,提出了XPS和HAXPES能量标度的校准和电荷校正的既定程序,这对于比较不同实验室、不同入射x射线源和光谱仪设置的结果至关重要。虽然基于实验室的LLZO表面HAXPES分析仍处于起步阶段,但事实证明,除了传统的XPS之外,HAXPES是一种非常强大的工具,可以无损地解决LLZO表面组成中的深度不均匀性,探测深度可达20-30 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standardizing XPS and HAXPES Analyses of LLZO Solid-State Electrolytes and Their Reactive Compounds

Surface contamination of Li7La3Zr2O12 (LLZO) is a significant challenge that impedes its use as a nonflammable and nontoxic solid-state electrolyte in high energy density, temperature-tolerant Li metal solid-state batteries. This work presents detailed dual-beam lab-based XPS/HAXPES analyses of the LLZO surface, complemented by studying reference samples such as Li, Li2O, LiOH, Li2CO3, La2O3, ZrO2, and La2Zr2O7. The objective is to establish baseline reference data, binding energy (BE) positions and more robust chemical shifts, for unambiguously identifying potential surface contaminants and surface reaction layers, for example, as a function of the synthesis and surface treatment conditions. Furthermore, the established procedures for the calibration and charge correction of the XPS and HAXPES energy scales are proposed, as is essential for comparing results across different laboratories and for different incident X-ray sources and spectrometer setups. While lab-based HAXPES analysis of LLZO surfaces is still at its infancy, it is proven to be a very powerful tool in addition to conventional XPS for nondestructively resolving in-depth inhomogeneities in the composition of LLZO surfaces up to probing depths in the range of 20–30 nm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信