Maximilian Dreer,Thomas Pribasnig,Logan H Hodgskiss,Zhen-Hao Luo,Fran Pozaric,Christa Schleper
{"title":"氨氧化古菌不同谱系的生物膜生活方式。","authors":"Maximilian Dreer,Thomas Pribasnig,Logan H Hodgskiss,Zhen-Hao Luo,Fran Pozaric,Christa Schleper","doi":"10.1093/ismejo/wraf182","DOIUrl":null,"url":null,"abstract":"Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation. Based on microscopic and gene expression data, two different colonization strategies could be distinguished. S-layer containing AOA (from both soil and marine habitats) initialized attachment as single cells, subsequently forming denser layers, whereas the S-layer free species of the Nitrosocosmicus clade attached as suspended aggregates to the surface and henceforth showed fastest establishment of biofilm. Transcription profiles were significantly different between planktonic and biofilm growth in all strains, and revealed individual transcriptomic responses, albeit fulfilling shared functions. In particular, the strong expression of different types of multicopper oxidases was observed in all strains suggesting modifications of their cell coats. S-layer carrying AOA each additionally expressed a set of adhesion proteins supporting attachment. Detoxification of nitrous compounds, copper acquisition as well as the expression of transcription factor B were also shared responses among biofilm producing strains. However, the majority of differentially expressed protein families was distinct among the three strains, illustrating that individual solutions have evolved for the shared growth mode of biofilm formation in AOA, probably driven by the different ecological niches.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.\",\"authors\":\"Maximilian Dreer,Thomas Pribasnig,Logan H Hodgskiss,Zhen-Hao Luo,Fran Pozaric,Christa Schleper\",\"doi\":\"10.1093/ismejo/wraf182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation. Based on microscopic and gene expression data, two different colonization strategies could be distinguished. S-layer containing AOA (from both soil and marine habitats) initialized attachment as single cells, subsequently forming denser layers, whereas the S-layer free species of the Nitrosocosmicus clade attached as suspended aggregates to the surface and henceforth showed fastest establishment of biofilm. Transcription profiles were significantly different between planktonic and biofilm growth in all strains, and revealed individual transcriptomic responses, albeit fulfilling shared functions. In particular, the strong expression of different types of multicopper oxidases was observed in all strains suggesting modifications of their cell coats. S-layer carrying AOA each additionally expressed a set of adhesion proteins supporting attachment. Detoxification of nitrous compounds, copper acquisition as well as the expression of transcription factor B were also shared responses among biofilm producing strains. However, the majority of differentially expressed protein families was distinct among the three strains, illustrating that individual solutions have evolved for the shared growth mode of biofilm formation in AOA, probably driven by the different ecological niches.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.
Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation. Based on microscopic and gene expression data, two different colonization strategies could be distinguished. S-layer containing AOA (from both soil and marine habitats) initialized attachment as single cells, subsequently forming denser layers, whereas the S-layer free species of the Nitrosocosmicus clade attached as suspended aggregates to the surface and henceforth showed fastest establishment of biofilm. Transcription profiles were significantly different between planktonic and biofilm growth in all strains, and revealed individual transcriptomic responses, albeit fulfilling shared functions. In particular, the strong expression of different types of multicopper oxidases was observed in all strains suggesting modifications of their cell coats. S-layer carrying AOA each additionally expressed a set of adhesion proteins supporting attachment. Detoxification of nitrous compounds, copper acquisition as well as the expression of transcription factor B were also shared responses among biofilm producing strains. However, the majority of differentially expressed protein families was distinct among the three strains, illustrating that individual solutions have evolved for the shared growth mode of biofilm formation in AOA, probably driven by the different ecological niches.