Tanner C Martinez,Matthew R M Jotte,Saira Khan,Angela Stoddart,Hunter Z Blaylock,Ankit Malik,Megan E McNerney
{"title":"CUX1通过抑制干细胞内在炎症通路抑制造血干细胞的潜在可塑性。","authors":"Tanner C Martinez,Matthew R M Jotte,Saira Khan,Angela Stoddart,Hunter Z Blaylock,Ankit Malik,Megan E McNerney","doi":"10.1182/blood.2024026815","DOIUrl":null,"url":null,"abstract":"Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q). Here, using novel mouse models and single-cell approaches, we report that dynamic and distinct CUX1 levels are integral to hematopoietic stem cell (HSC) activity. Knockdown of CUX1 reverses HSC differentiation and strikingly re-endows progenitors with stem cell function, accompanied by restoration of the HSC transcriptome and DNA accessibility landscape. CUX1 mediates these activities, in part, via suppressing endogenous retroelements (EREs) and the ensuing interferon-stimulated gene expression program. Both EREs and the interferon response are upregulated in CUX1-deficient acute myeloid leukemia (AML), suggesting a conserved role of CUX1 in regulating these elements. These data establish an unexpected entwinement of stem cell-intrinsic innate immune activation and the transcriptional programs of stem cell identity. Further, we reveal the profound effects of transcription factor levels in cell fate.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"24 1","pages":""},"PeriodicalIF":23.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CUX1 restrains latent hematopoietic stem cell plasticity by suppressing stem cell-intrinsic inflammatory pathways.\",\"authors\":\"Tanner C Martinez,Matthew R M Jotte,Saira Khan,Angela Stoddart,Hunter Z Blaylock,Ankit Malik,Megan E McNerney\",\"doi\":\"10.1182/blood.2024026815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q). Here, using novel mouse models and single-cell approaches, we report that dynamic and distinct CUX1 levels are integral to hematopoietic stem cell (HSC) activity. Knockdown of CUX1 reverses HSC differentiation and strikingly re-endows progenitors with stem cell function, accompanied by restoration of the HSC transcriptome and DNA accessibility landscape. CUX1 mediates these activities, in part, via suppressing endogenous retroelements (EREs) and the ensuing interferon-stimulated gene expression program. Both EREs and the interferon response are upregulated in CUX1-deficient acute myeloid leukemia (AML), suggesting a conserved role of CUX1 in regulating these elements. These data establish an unexpected entwinement of stem cell-intrinsic innate immune activation and the transcriptional programs of stem cell identity. Further, we reveal the profound effects of transcription factor levels in cell fate.\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":23.1000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024026815\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024026815","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q). Here, using novel mouse models and single-cell approaches, we report that dynamic and distinct CUX1 levels are integral to hematopoietic stem cell (HSC) activity. Knockdown of CUX1 reverses HSC differentiation and strikingly re-endows progenitors with stem cell function, accompanied by restoration of the HSC transcriptome and DNA accessibility landscape. CUX1 mediates these activities, in part, via suppressing endogenous retroelements (EREs) and the ensuing interferon-stimulated gene expression program. Both EREs and the interferon response are upregulated in CUX1-deficient acute myeloid leukemia (AML), suggesting a conserved role of CUX1 in regulating these elements. These data establish an unexpected entwinement of stem cell-intrinsic innate immune activation and the transcriptional programs of stem cell identity. Further, we reveal the profound effects of transcription factor levels in cell fate.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.