基于机器学习的二维TM3(HXBHYB)@ mof单原子高效氧电催化催化剂设计

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Kun Xie, Ye Shen*, Long Lin*, Xiangyu Guo*, Shengli Zhang* and Baolei Li, 
{"title":"基于机器学习的二维TM3(HXBHYB)@ mof单原子高效氧电催化催化剂设计","authors":"Kun Xie,&nbsp;Ye Shen*,&nbsp;Long Lin*,&nbsp;Xiangyu Guo*,&nbsp;Shengli Zhang* and Baolei Li,&nbsp;","doi":"10.1021/acs.jpclett.5c02042","DOIUrl":null,"url":null,"abstract":"<p >This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM<sub>3</sub>(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal–organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM<sub>3</sub>(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM<sub>3</sub>(HXBHYB)@MOF and their ORR/OER overpotentials. Model predictions identified promising systems, including Co<sub>3</sub>(HXBHYB) and Ir<sub>3</sub>(HXBHYB), with Co<sub>3</sub>(HHBHSB) and Co(HIB)<sub>2</sub> exhibiting exceptional ORR (η<sup>ORR</sup> = 0.276 V) and OER (η<sup>OER</sup> = 0.294 V) activities. SHAP analysis highlighted the valence electron count and atomic radius of the TM as critical descriptors, with the interaction between coordinating atoms and TM valence electrons governing catalytic activity. This work provides universal design principles for evaluating ORR/OER activities, offering a high-precision, low-cost method for catalyst screening.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 37","pages":"9682–9692"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Enhanced Design of 2D TM3(HXBHYB)@MOF-Based Single-Atom Catalysts for Efficient Oxygen Electrocatalysis\",\"authors\":\"Kun Xie,&nbsp;Ye Shen*,&nbsp;Long Lin*,&nbsp;Xiangyu Guo*,&nbsp;Shengli Zhang* and Baolei Li,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM<sub>3</sub>(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal–organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM<sub>3</sub>(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM<sub>3</sub>(HXBHYB)@MOF and their ORR/OER overpotentials. Model predictions identified promising systems, including Co<sub>3</sub>(HXBHYB) and Ir<sub>3</sub>(HXBHYB), with Co<sub>3</sub>(HHBHSB) and Co(HIB)<sub>2</sub> exhibiting exceptional ORR (η<sup>ORR</sup> = 0.276 V) and OER (η<sup>OER</sup> = 0.294 V) activities. SHAP analysis highlighted the valence electron count and atomic radius of the TM as critical descriptors, with the interaction between coordinating atoms and TM valence electrons governing catalytic activity. This work provides universal design principles for evaluating ORR/OER activities, offering a high-precision, low-cost method for catalyst screening.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 37\",\"pages\":\"9682–9692\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02042\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02042","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究将机器学习(ML)和密度泛函理论(DFT)相结合,系统地研究了二维(2D) TM3(HXBHYB) (HX/YB = HIB(六氨基苯)、hbb(六羟基苯)、HTB(六硫代苯)和HSB(六烯醇苯)金属有机框架(MOFs)的氧电催化活性。将过渡金属(TM)与上述配体偶联,构建了稳定的二维TM3(HXBHYB)@MOF体系。随机森林回归(RFR)模型优于其他模型,揭示了二维TM3(HXBHYB)@MOF的理化性质与其ORR/OER过电位之间的内在关系。模型预测确定了有希望的体系,包括Co3(HXBHYB)和Ir3(HXBHYB),其中Co3(HHBHSB)和Co(HIB)2表现出异常的ORR (ηORR = 0.276 V)和OER (ηOER = 0.294 V)活性。SHAP分析强调了TM的价电子数和原子半径是关键的描述符,配位原子和TM价电子之间的相互作用决定了催化活性。这项工作为评估ORR/OER活性提供了通用的设计原则,提供了一种高精度、低成本的催化剂筛选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Enhanced Design of 2D TM3(HXBHYB)@MOF-Based Single-Atom Catalysts for Efficient Oxygen Electrocatalysis

Machine Learning-Enhanced Design of 2D TM3(HXBHYB)@MOF-Based Single-Atom Catalysts for Efficient Oxygen Electrocatalysis

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM3(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal–organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM3(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM3(HXBHYB)@MOF and their ORR/OER overpotentials. Model predictions identified promising systems, including Co3(HXBHYB) and Ir3(HXBHYB), with Co3(HHBHSB) and Co(HIB)2 exhibiting exceptional ORR (ηORR = 0.276 V) and OER (ηOER = 0.294 V) activities. SHAP analysis highlighted the valence electron count and atomic radius of the TM as critical descriptors, with the interaction between coordinating atoms and TM valence electrons governing catalytic activity. This work provides universal design principles for evaluating ORR/OER activities, offering a high-precision, low-cost method for catalyst screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信