Wonyoung Kim , Soyeon Kim , Hawon Woo , Renuka Anil Jojare , Raghvendra Mall , Asia Nicotra , Benedicte F. Py , Chinh Ngo , Si Ming Man , Chirag N. Patel , Rajendra Karki
{"title":"一种有效的NLRP3抑制剂,对mcc950敏感和耐药炎症均有效","authors":"Wonyoung Kim , Soyeon Kim , Hawon Woo , Renuka Anil Jojare , Raghvendra Mall , Asia Nicotra , Benedicte F. Py , Chinh Ngo , Si Ming Man , Chirag N. Patel , Rajendra Karki","doi":"10.1016/j.chembiol.2025.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome detects a broad spectrum of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), initiating inflammatory responses through caspase-1 activation and interleukin (IL)-1β/IL-18 release. Dysregulated NLRP3 activation is implicated in a range of diseases, including infectious diseases, autoinflammatory disorders, metabolic disorders, and cancer, making it an attractive therapeutic target. Here, we identify ZAP-180013 as a potent and selective small-molecule inhibitor of NLRP3 through high-throughput chemical screening. Molecular docking predicted that ZAP-180013 interacts with histidine 698 (H698) in NLRP3; this was validated by H698A substitution, which abolished binding and inhibitory activity. ZAP-180013 effectively inhibited inflammasome activation in human myeloid cells, including those carrying MCC950-resistant NLRP3 mutations. <em>In vivo</em>, systemic administration of ZAP-180013 ameliorated psoriasiform skin inflammation and protected against lipopolysaccharide (LPS)-induced cytokine responses in mice. These findings establish ZAP-180013 as a potent and selective NLRP3 inhibitor with translational potential in both MCC950-sensitive and -resistant inflammatory disease settings.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 9","pages":"Pages 1125-1139.e7"},"PeriodicalIF":7.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A potent NLRP3 inhibitor effective against both MCC950-sensitive and -resistant inflammation\",\"authors\":\"Wonyoung Kim , Soyeon Kim , Hawon Woo , Renuka Anil Jojare , Raghvendra Mall , Asia Nicotra , Benedicte F. Py , Chinh Ngo , Si Ming Man , Chirag N. Patel , Rajendra Karki\",\"doi\":\"10.1016/j.chembiol.2025.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome detects a broad spectrum of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), initiating inflammatory responses through caspase-1 activation and interleukin (IL)-1β/IL-18 release. Dysregulated NLRP3 activation is implicated in a range of diseases, including infectious diseases, autoinflammatory disorders, metabolic disorders, and cancer, making it an attractive therapeutic target. Here, we identify ZAP-180013 as a potent and selective small-molecule inhibitor of NLRP3 through high-throughput chemical screening. Molecular docking predicted that ZAP-180013 interacts with histidine 698 (H698) in NLRP3; this was validated by H698A substitution, which abolished binding and inhibitory activity. ZAP-180013 effectively inhibited inflammasome activation in human myeloid cells, including those carrying MCC950-resistant NLRP3 mutations. <em>In vivo</em>, systemic administration of ZAP-180013 ameliorated psoriasiform skin inflammation and protected against lipopolysaccharide (LPS)-induced cytokine responses in mice. These findings establish ZAP-180013 as a potent and selective NLRP3 inhibitor with translational potential in both MCC950-sensitive and -resistant inflammatory disease settings.</div></div>\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":\"32 9\",\"pages\":\"Pages 1125-1139.e7\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451945625002594\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625002594","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A potent NLRP3 inhibitor effective against both MCC950-sensitive and -resistant inflammation
The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome detects a broad spectrum of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), initiating inflammatory responses through caspase-1 activation and interleukin (IL)-1β/IL-18 release. Dysregulated NLRP3 activation is implicated in a range of diseases, including infectious diseases, autoinflammatory disorders, metabolic disorders, and cancer, making it an attractive therapeutic target. Here, we identify ZAP-180013 as a potent and selective small-molecule inhibitor of NLRP3 through high-throughput chemical screening. Molecular docking predicted that ZAP-180013 interacts with histidine 698 (H698) in NLRP3; this was validated by H698A substitution, which abolished binding and inhibitory activity. ZAP-180013 effectively inhibited inflammasome activation in human myeloid cells, including those carrying MCC950-resistant NLRP3 mutations. In vivo, systemic administration of ZAP-180013 ameliorated psoriasiform skin inflammation and protected against lipopolysaccharide (LPS)-induced cytokine responses in mice. These findings establish ZAP-180013 as a potent and selective NLRP3 inhibitor with translational potential in both MCC950-sensitive and -resistant inflammatory disease settings.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.