PEO-NaPF6电解质的离子电导率机制

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-09-09 DOI:10.1039/D5NR01630D
Hema Teherpuria, Sipra Mohapatra, Akash K. Meel, Sapta Sindhu Paul Chowdhury, Subbarao Kanchi, Prabhat K. Jaiswal and Santosh Mogurampelly
{"title":"PEO-NaPF6电解质的离子电导率机制","authors":"Hema Teherpuria, Sipra Mohapatra, Akash K. Meel, Sapta Sindhu Paul Chowdhury, Subbarao Kanchi, Prabhat K. Jaiswal and Santosh Mogurampelly","doi":"10.1039/D5NR01630D","DOIUrl":null,"url":null,"abstract":"<p >Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration (<em>c</em>) effects on ionic conductivity (<em>σ</em>) mechanisms in sodium hexafluorophosphate (NaPF<small><sub>6</sub></small>) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix. We find that the diffusion coefficient of Na<small><sup>+</sup></small> and PF<small><sub>6</sub></small><small><sup>−</sup></small> follows the Stokes–Einstein behavior with viscosity (<em>η</em>) and ion-pair relaxation timescales (<em>τ</em><small><sub>c</sub></small>): <em>D</em><small><sub>+</sub></small> ∼ <em>τ</em><small><sub>c</sub></small><small><sup>−0.87</sup></small>, <em>D</em><small><sub>−</sub></small> ∼ <em>τ</em><small><sub>c</sub></small><small><sup>−0.93</sup></small>, <em>D</em><small><sub>+</sub></small> ∼ <em>η</em><small><sup>−1.08</sup></small>, and <em>D</em><small><sub>−</sub></small> ∼ <em>η</em><small><sup>−1.09</sup></small>, emphasizing the role of ion–polymer coordination and relaxation behavior in governing ion transport. Further analysis reveals an intriguing nonmonotonic trend in the Nernst–Einstein and <em>true</em> ionic conductivity as a function of <em>c</em>, peaking near <em>c</em> = 1 M. We model this behavior as <em>σ</em> ∼ <em>c</em><small><sup>α</sup></small> exp(−<em>c</em>/<em>c</em><small><sub>0</sub></small>), where the nonlinear term (<em>α</em> = 1.6) reflects efficient ion transport due to the absence of ion–ion correlations at low <em>c</em>, and the exponential decay quantifies viscosity-driven losses in ionic conductivity at high <em>c</em>. Our work establishes molecular guidelines to optimize conductivity in sodium-conducting polymer electrolytes, advancing next-generation sodium ion electrolyte technologies.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 37","pages":" 21573-21581"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic conductivity mechanisms in PEO–NaPF6 electrolytes\",\"authors\":\"Hema Teherpuria, Sipra Mohapatra, Akash K. Meel, Sapta Sindhu Paul Chowdhury, Subbarao Kanchi, Prabhat K. Jaiswal and Santosh Mogurampelly\",\"doi\":\"10.1039/D5NR01630D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration (<em>c</em>) effects on ionic conductivity (<em>σ</em>) mechanisms in sodium hexafluorophosphate (NaPF<small><sub>6</sub></small>) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix. We find that the diffusion coefficient of Na<small><sup>+</sup></small> and PF<small><sub>6</sub></small><small><sup>−</sup></small> follows the Stokes–Einstein behavior with viscosity (<em>η</em>) and ion-pair relaxation timescales (<em>τ</em><small><sub>c</sub></small>): <em>D</em><small><sub>+</sub></small> ∼ <em>τ</em><small><sub>c</sub></small><small><sup>−0.87</sup></small>, <em>D</em><small><sub>−</sub></small> ∼ <em>τ</em><small><sub>c</sub></small><small><sup>−0.93</sup></small>, <em>D</em><small><sub>+</sub></small> ∼ <em>η</em><small><sup>−1.08</sup></small>, and <em>D</em><small><sub>−</sub></small> ∼ <em>η</em><small><sup>−1.09</sup></small>, emphasizing the role of ion–polymer coordination and relaxation behavior in governing ion transport. Further analysis reveals an intriguing nonmonotonic trend in the Nernst–Einstein and <em>true</em> ionic conductivity as a function of <em>c</em>, peaking near <em>c</em> = 1 M. We model this behavior as <em>σ</em> ∼ <em>c</em><small><sup>α</sup></small> exp(−<em>c</em>/<em>c</em><small><sub>0</sub></small>), where the nonlinear term (<em>α</em> = 1.6) reflects efficient ion transport due to the absence of ion–ion correlations at low <em>c</em>, and the exponential decay quantifies viscosity-driven losses in ionic conductivity at high <em>c</em>. Our work establishes molecular guidelines to optimize conductivity in sodium-conducting polymer electrolytes, advancing next-generation sodium ion electrolyte technologies.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 37\",\"pages\":\" 21573-21581\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01630d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01630d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到钠离子电解质技术作为锂基系统的可持续替代品的出现,了解钠离子聚合物电解质中的离子传输机制至关重要。本文采用全原子分子动力学模拟研究了六氟磷酸钠(NaPF6)在聚氧聚乙烯(PEO)电解质中的盐浓度(c)对离子电导率(σ)的影响机制。钠离子表现出与锂基聚合物电解质相当的离子溶剂化壳特性,具有相似的阴离子配位,但在聚合物基质中具有更多的氧配位。我们发现Na+和PF6−的扩散系数遵循粘度(η)和离子对弛豫时间尺度(τc)的Stokes-Einstein行为:D+ ~ τc−0.87,D−~ τc−0.93,D+ ~ η−1.08和D−~ η−1.09,强调了离子-聚合物配位和弛豫行为在控制离子输运中的作用。进一步的分析揭示了一个有趣的非单调趋势,在能斯特-爱因斯坦和真正的离子电导率作为c的函数,在c = 1 m附近达到峰值。我们将这种行为建模为σ ~ cα exp(- c/c0),其中非线性项(α = 1.6)反映了由于低c时缺乏离子-离子相关性而导致的有效离子传输。指数衰减量化了高温度下粘度驱动的离子电导率损失。我们的工作建立了优化钠导电聚合物电解质电导率的分子指南,推动了下一代钠离子电解质技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ionic conductivity mechanisms in PEO–NaPF6 electrolytes

Ionic conductivity mechanisms in PEO–NaPF6 electrolytes

Ionic conductivity mechanisms in PEO–NaPF6 electrolytes

Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration (c) effects on ionic conductivity (σ) mechanisms in sodium hexafluorophosphate (NaPF6) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix. We find that the diffusion coefficient of Na+ and PF6 follows the Stokes–Einstein behavior with viscosity (η) and ion-pair relaxation timescales (τc): D+τc−0.87, Dτc−0.93, D+η−1.08, and Dη−1.09, emphasizing the role of ion–polymer coordination and relaxation behavior in governing ion transport. Further analysis reveals an intriguing nonmonotonic trend in the Nernst–Einstein and true ionic conductivity as a function of c, peaking near c = 1 M. We model this behavior as σcα exp(−c/c0), where the nonlinear term (α = 1.6) reflects efficient ion transport due to the absence of ion–ion correlations at low c, and the exponential decay quantifies viscosity-driven losses in ionic conductivity at high c. Our work establishes molecular guidelines to optimize conductivity in sodium-conducting polymer electrolytes, advancing next-generation sodium ion electrolyte technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信