{"title":"在千赫兹频带的明亮的压缩光","authors":"Ruixin Li, Bingnan An, Nanjing Jiao, Junyang Liu, Lirong Chen, Yajun Wang, Yaohui Zheng","doi":"10.1038/s41377-025-02013-7","DOIUrl":null,"url":null,"abstract":"<p>The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies. This hybrid technique achieves an additional 9 dB technical noise suppression, establishing critical prerequisites for broadband bright squeezed light generation. Finally, a -5.5 dB bright squeezed light at 1 mW with kHz-MHz squeezing bandwidth was generated. The experimental results show excellent agreement with theoretical predictions, which represent we have comprehensively demonstrated a milliwatt-order bright squeezed light across kHz-MHz frequencies. Our work enables new quantum metrology applications and paves the way for next-generation quantum-enhanced technologies.</p><figure><p>Nonclassical hybrid passive–active power stabilization enables milliwatt-level bright squeezing across kHz–MHz band</p></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"23 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bright squeezed light in the kilohertz frequency band\",\"authors\":\"Ruixin Li, Bingnan An, Nanjing Jiao, Junyang Liu, Lirong Chen, Yajun Wang, Yaohui Zheng\",\"doi\":\"10.1038/s41377-025-02013-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies. This hybrid technique achieves an additional 9 dB technical noise suppression, establishing critical prerequisites for broadband bright squeezed light generation. Finally, a -5.5 dB bright squeezed light at 1 mW with kHz-MHz squeezing bandwidth was generated. The experimental results show excellent agreement with theoretical predictions, which represent we have comprehensively demonstrated a milliwatt-order bright squeezed light across kHz-MHz frequencies. Our work enables new quantum metrology applications and paves the way for next-generation quantum-enhanced technologies.</p><figure><p>Nonclassical hybrid passive–active power stabilization enables milliwatt-level bright squeezing across kHz–MHz band</p></figure>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-02013-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02013-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Bright squeezed light in the kilohertz frequency band
The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies. This hybrid technique achieves an additional 9 dB technical noise suppression, establishing critical prerequisites for broadband bright squeezed light generation. Finally, a -5.5 dB bright squeezed light at 1 mW with kHz-MHz squeezing bandwidth was generated. The experimental results show excellent agreement with theoretical predictions, which represent we have comprehensively demonstrated a milliwatt-order bright squeezed light across kHz-MHz frequencies. Our work enables new quantum metrology applications and paves the way for next-generation quantum-enhanced technologies.
Nonclassical hybrid passive–active power stabilization enables milliwatt-level bright squeezing across kHz–MHz band