具有动态控制的光电子聚合物忆阻器,用于高能效传感器内边缘计算

IF 23.4 Q1 OPTICS
Jia Zhou, Wen Li, Ye Chen, Haowen Qian, Yen-Hung Lin, Ruipeng Li, Zhen Wang, Jin Wang, Wei Shi, Xianwang Tao, Youtian Tao, Haifeng Ling, Wei Huang, Mingdong Yi
{"title":"具有动态控制的光电子聚合物忆阻器,用于高能效传感器内边缘计算","authors":"Jia Zhou, Wen Li, Ye Chen, Haowen Qian, Yen-Hung Lin, Ruipeng Li, Zhen Wang, Jin Wang, Wei Shi, Xianwang Tao, Youtian Tao, Haifeng Ling, Wei Huang, Mingdong Yi","doi":"10.1038/s41377-025-01986-9","DOIUrl":null,"url":null,"abstract":"<p>As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components. Here, we introduce low-power organic optoelectronic memristors with synergistic optical and mV-level electrical tunable operation for a dynamic “control-on-demand” architecture. Integrating signal sensing, featuring, and processing within the same memristors enables the realization of each in-sensor analogue reservoir computing module, and minimizes circuit integration complexity. The system achieves 97.15% fingerprint recognition accuracy while maintaining a minimal reservoir size and ultra-low energy consumption. Furthermore, we leverage wafer-scale solution techniques and flexible substrates for optimal memristor fabrication. By centralizing core functionalities on the same in-sensor platform, we propose a resilient and adaptable framework for energy-efficient and economical edge computing.</p><figure></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing\",\"authors\":\"Jia Zhou, Wen Li, Ye Chen, Haowen Qian, Yen-Hung Lin, Ruipeng Li, Zhen Wang, Jin Wang, Wei Shi, Xianwang Tao, Youtian Tao, Haifeng Ling, Wei Huang, Mingdong Yi\",\"doi\":\"10.1038/s41377-025-01986-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components. Here, we introduce low-power organic optoelectronic memristors with synergistic optical and mV-level electrical tunable operation for a dynamic “control-on-demand” architecture. Integrating signal sensing, featuring, and processing within the same memristors enables the realization of each in-sensor analogue reservoir computing module, and minimizes circuit integration complexity. The system achieves 97.15% fingerprint recognition accuracy while maintaining a minimal reservoir size and ultra-low energy consumption. Furthermore, we leverage wafer-scale solution techniques and flexible substrates for optimal memristor fabrication. By centralizing core functionalities on the same in-sensor platform, we propose a resilient and adaptable framework for energy-efficient and economical edge computing.</p><figure></figure>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01986-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01986-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

随着包括移动设备和安全应用在内的人工智能领域对边缘平台的需求增加,涌入边缘设备的数据激增往往会引发干扰和次优决策。迫切需要强调低功耗和成本效益的解决方案。由于需要多个物理处理组件,采用忆阻器的传感器内计算系统在优化能源效率和简化制造方面面临挑战。在这里,我们介绍了具有协同光学和mv级电可调操作的低功耗有机光电忆阻器,用于动态“按需控制”架构。在相同的忆阻器内集成信号传感、特征和处理,可以实现每个传感器内模拟油藏计算模块,并最大限度地降低电路集成的复杂性。该系统在保持最小储层尺寸和超低能耗的同时,指纹识别准确率达到97.15%。此外,我们利用晶圆级溶液技术和柔性衬底来优化忆阻器制造。通过将核心功能集中在相同的传感器内平台上,我们提出了一种具有弹性和适应性的框架,用于节能和经济的边缘计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components. Here, we introduce low-power organic optoelectronic memristors with synergistic optical and mV-level electrical tunable operation for a dynamic “control-on-demand” architecture. Integrating signal sensing, featuring, and processing within the same memristors enables the realization of each in-sensor analogue reservoir computing module, and minimizes circuit integration complexity. The system achieves 97.15% fingerprint recognition accuracy while maintaining a minimal reservoir size and ultra-low energy consumption. Furthermore, we leverage wafer-scale solution techniques and flexible substrates for optimal memristor fabrication. By centralizing core functionalities on the same in-sensor platform, we propose a resilient and adaptable framework for energy-efficient and economical edge computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信