NifL-NifA复合物的结构分析揭示了固氮基因表达抗活化的分子基础。

IF 4.2
Marcelo Bueno Batista, Jake Richardson, Michael W Webster, Dmitry Ghilarov, John W Peters, David M Lawson, Ray Dixon
{"title":"NifL-NifA复合物的结构分析揭示了固氮基因表达抗活化的分子基础。","authors":"Marcelo Bueno Batista, Jake Richardson, Michael W Webster, Dmitry Ghilarov, John W Peters, David M Lawson, Ray Dixon","doi":"10.1111/febs.70253","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the molecular basis of regulated nitrogen (N<sub>2</sub>) fixation is essential for engineering N<sub>2</sub>-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability. The nitrogen fixation machinery is thereby only activated under strictly favorable conditions, enabling diazotrophs to thrive in competitive environments. While genetic and biochemical studies have enlightened our understanding of how NifL represses NifA, the molecular basis of NifA sequestration by NifL depends on structural information on their interaction. Here, we present mechanistic insights into how nitrogen fixation is regulated by combining biochemical and genetic approaches with a low-resolution cryo-electron microscopy (cryo-EM) map of the oxidized NifL-NifA complex. Our findings define the interaction surface between NifL and NifA and reveal how this interaction can be manipulated to generate bacterial strains with increased nitrogen fixation rates able to secrete surplus nitrogen outside the cell, a crucial step in engineering improved nitrogen delivery to crop plants.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of the NifL-NifA complex reveals the molecular basis of anti-activation of nitrogen fixation gene expression in Azotobacter vinelandii.\",\"authors\":\"Marcelo Bueno Batista, Jake Richardson, Michael W Webster, Dmitry Ghilarov, John W Peters, David M Lawson, Ray Dixon\",\"doi\":\"10.1111/febs.70253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the molecular basis of regulated nitrogen (N<sub>2</sub>) fixation is essential for engineering N<sub>2</sub>-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability. The nitrogen fixation machinery is thereby only activated under strictly favorable conditions, enabling diazotrophs to thrive in competitive environments. While genetic and biochemical studies have enlightened our understanding of how NifL represses NifA, the molecular basis of NifA sequestration by NifL depends on structural information on their interaction. Here, we present mechanistic insights into how nitrogen fixation is regulated by combining biochemical and genetic approaches with a low-resolution cryo-electron microscopy (cryo-EM) map of the oxidized NifL-NifA complex. Our findings define the interaction surface between NifL and NifA and reveal how this interaction can be manipulated to generate bacterial strains with increased nitrogen fixation rates able to secrete surplus nitrogen outside the cell, a crucial step in engineering improved nitrogen delivery to crop plants.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解调控氮(N2)固定的分子基础对于工程固氮细菌满足作物对固定氮的需求,减少我们对合成氮肥的依赖至关重要。在Azotobacter vinelandii和许多其他变形菌门成员中,由抗激活蛋白(NifL)和nif特异性转录激活因子(NifA)组成的双组分系统控制nif基因的表达,编码固氮机制。NifL-NifA系统进化出了整合多种环境信号的能力,如氧、氮和碳的可用性。因此,固氮机制只有在严格有利的条件下才会被激活,从而使重氮营养体在竞争环境中茁壮成长。虽然遗传和生化研究已经让我们了解了NifL如何抑制NifA,但NifL封存NifA的分子基础取决于它们相互作用的结构信息。在这里,我们通过结合生化和遗传方法以及氧化的nfl - nifa复合物的低分辨率冷冻电镜(cryo-EM)图谱,提出了固氮是如何调节的机制见解。我们的研究结果定义了NifL和NifA之间的相互作用表面,并揭示了如何操纵这种相互作用来产生具有更高固氮率的细菌菌株,这些菌株能够在细胞外分泌多余的氮,这是工程改进作物植物氮输送的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural analysis of the NifL-NifA complex reveals the molecular basis of anti-activation of nitrogen fixation gene expression in Azotobacter vinelandii.

Understanding the molecular basis of regulated nitrogen (N2) fixation is essential for engineering N2-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability. The nitrogen fixation machinery is thereby only activated under strictly favorable conditions, enabling diazotrophs to thrive in competitive environments. While genetic and biochemical studies have enlightened our understanding of how NifL represses NifA, the molecular basis of NifA sequestration by NifL depends on structural information on their interaction. Here, we present mechanistic insights into how nitrogen fixation is regulated by combining biochemical and genetic approaches with a low-resolution cryo-electron microscopy (cryo-EM) map of the oxidized NifL-NifA complex. Our findings define the interaction surface between NifL and NifA and reveal how this interaction can be manipulated to generate bacterial strains with increased nitrogen fixation rates able to secrete surplus nitrogen outside the cell, a crucial step in engineering improved nitrogen delivery to crop plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信