GPT2-ICC:使用预训练的大型语言模型进行准确离子通道识别的数据驱动方法。

IF 8.9
Journal of pharmaceutical analysis Pub Date : 2025-08-01 Epub Date: 2025-04-09 DOI:10.1016/j.jpha.2025.101302
Zihan Zhou, Yang Yu, Chengji Yang, Leyan Cao, Shaoying Zhang, Junnan Li, Yingnan Zhang, Huayun Han, Guoliang Shi, Qiansen Zhang, Juwen Shen, Huaiyu Yang
{"title":"GPT2-ICC:使用预训练的大型语言模型进行准确离子通道识别的数据驱动方法。","authors":"Zihan Zhou, Yang Yu, Chengji Yang, Leyan Cao, Shaoying Zhang, Junnan Li, Yingnan Zhang, Huayun Han, Guoliang Shi, Qiansen Zhang, Juwen Shen, Huaiyu Yang","doi":"10.1016/j.jpha.2025.101302","DOIUrl":null,"url":null,"abstract":"<p><p>Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces. Here we have developed a deep learning algorithm, GPT2 Ion Channel Classifier (GPT2-ICC), which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins. GPT2-ICC integrates representation learning with a large language model (LLM)-based classifier, enabling highly accurate identification of potential ion channels. Several potential ion channels were predicated from the unannotated human proteome, further demonstrating GPT2-ICC's generalization ability. This study marks a significant advancement in artificial-intelligence-driven ion channel research, highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data. Moreover, it provides a valuable computational tool for uncovering previously uncharacterized ion channels.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 8","pages":"101302"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409385/pdf/","citationCount":"0","resultStr":"{\"title\":\"GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.\",\"authors\":\"Zihan Zhou, Yang Yu, Chengji Yang, Leyan Cao, Shaoying Zhang, Junnan Li, Yingnan Zhang, Huayun Han, Guoliang Shi, Qiansen Zhang, Juwen Shen, Huaiyu Yang\",\"doi\":\"10.1016/j.jpha.2025.101302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces. Here we have developed a deep learning algorithm, GPT2 Ion Channel Classifier (GPT2-ICC), which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins. GPT2-ICC integrates representation learning with a large language model (LLM)-based classifier, enabling highly accurate identification of potential ion channels. Several potential ion channels were predicated from the unannotated human proteome, further demonstrating GPT2-ICC's generalization ability. This study marks a significant advancement in artificial-intelligence-driven ion channel research, highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data. Moreover, it provides a valuable computational tool for uncovering previously uncharacterized ion channels.</p>\",\"PeriodicalId\":94338,\"journal\":{\"name\":\"Journal of pharmaceutical analysis\",\"volume\":\"15 8\",\"pages\":\"101302\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpha.2025.101302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的实验和计算方法在准确和有效地对巨大蛋白质空间中的离子通道进行分类方面存在局限性。在这里,我们开发了一种深度学习算法,GPT2离子通道分类器(GPT2- icc),它可以有效地从包含大约239倍的非离子通道蛋白质的测试集中区分离子通道。GPT2-ICC将表示学习与基于大型语言模型(LLM)的分类器集成在一起,能够高度准确地识别潜在的离子通道。从未注释的人类蛋白质组中预测了几个潜在的离子通道,进一步证明了GPT2-ICC的泛化能力。本研究标志着人工智能驱动的离子通道研究取得了重大进展,突出了将表示学习与llm相结合来解决蛋白质序列数据不平衡挑战的适应性和有效性。此外,它为揭示以前未表征的离子通道提供了有价值的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.

GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.

GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.

GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.

Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces. Here we have developed a deep learning algorithm, GPT2 Ion Channel Classifier (GPT2-ICC), which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins. GPT2-ICC integrates representation learning with a large language model (LLM)-based classifier, enabling highly accurate identification of potential ion channels. Several potential ion channels were predicated from the unannotated human proteome, further demonstrating GPT2-ICC's generalization ability. This study marks a significant advancement in artificial-intelligence-driven ion channel research, highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data. Moreover, it provides a valuable computational tool for uncovering previously uncharacterized ion channels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信