通过移码编码和纳米孔双工中断解码推进无合成和无酶可重写DNA记忆。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-09-05 eCollection Date: 2025-09-01 DOI:10.1093/pnasnexus/pgaf233
Kai Tian, Sicheng Zhang, Sally Chen, Rugare G Chingarande, Chengrui Hou, Emily Ma, Jarett Ren, Shinghua Ding, Mia Stertzer, Binquan Luan, Shi-Jie Chen, Shi-You Chen, Li-Qun Gu
{"title":"通过移码编码和纳米孔双工中断解码推进无合成和无酶可重写DNA记忆。","authors":"Kai Tian, Sicheng Zhang, Sally Chen, Rugare G Chingarande, Chengrui Hou, Emily Ma, Jarett Ren, Shinghua Ding, Mia Stertzer, Binquan Luan, Shi-Jie Chen, Shi-You Chen, Li-Qun Gu","doi":"10.1093/pnasnexus/pgaf233","DOIUrl":null,"url":null,"abstract":"<p><p>DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging \"hard drive\" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications. However, these approaches face challenges including complexity, low data density, enzymatic constraints, and reliance on costly instrumentation. Here, we introduce a DNA memory system based on frameshift encoding, inspired by viral ribosomal frameshifting, to enable rapid, cost-effective, and parallel data writing on a universal DNA template, without synthesis, enzymatic processing, or labeling. Information is encoded as checkpoint frameshifts by annealing microstaples of varying lengths at predefined sites along a long template strand. Data are decoded using MspA nanopore duplex interruption sequencing, which leverages a novel unzipping marker we discovered and frameshift-induced current signatures to resolve individual bits while sequentially unzipping tandem template-microstaple duplexes. Importantly, the duplex structure enables efficient, bit-specific rewriting through toehold-mediated strand displacement. This approach presents a scalable and versatile framework for DNA-based hard drives, with potential applications extending into in-memory computing, encryption, and dynamic biomolecular sensing.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 9","pages":"pgaf233"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing synthesis-free and enzyme-free rewritable DNA memory through frameshift encoding and nanopore duplex interruption decoding.\",\"authors\":\"Kai Tian, Sicheng Zhang, Sally Chen, Rugare G Chingarande, Chengrui Hou, Emily Ma, Jarett Ren, Shinghua Ding, Mia Stertzer, Binquan Luan, Shi-Jie Chen, Shi-You Chen, Li-Qun Gu\",\"doi\":\"10.1093/pnasnexus/pgaf233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging \\\"hard drive\\\" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications. However, these approaches face challenges including complexity, low data density, enzymatic constraints, and reliance on costly instrumentation. Here, we introduce a DNA memory system based on frameshift encoding, inspired by viral ribosomal frameshifting, to enable rapid, cost-effective, and parallel data writing on a universal DNA template, without synthesis, enzymatic processing, or labeling. Information is encoded as checkpoint frameshifts by annealing microstaples of varying lengths at predefined sites along a long template strand. Data are decoded using MspA nanopore duplex interruption sequencing, which leverages a novel unzipping marker we discovered and frameshift-induced current signatures to resolve individual bits while sequentially unzipping tandem template-microstaple duplexes. Importantly, the duplex structure enables efficient, bit-specific rewriting through toehold-mediated strand displacement. This approach presents a scalable and versatile framework for DNA-based hard drives, with potential applications extending into in-memory computing, encryption, and dynamic biomolecular sensing.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 9\",\"pages\":\"pgaf233\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

DNA数据存储具有高密度、低能耗、耐用性和易于复制等优点,是传统存储的一种很有前途的替代方法。虽然信息可以通过合成编码到DNA中,但高成本和缺乏重写能力限制了其在档案存储之外的应用。新兴的“硬盘驱动器”策略寻求将数据编码到通用的DNA模板上,而不需要重新合成,使用DNA纳米结构和碱基修饰等方法。然而,这些方法面临的挑战包括复杂性、低数据密度、酶限制以及对昂贵仪器的依赖。在这里,我们介绍了一种基于移码编码的DNA记忆系统,受病毒核糖体移码的启发,可以在通用DNA模板上快速、经济、并行地写入数据,而无需合成、酶处理或标记。信息被编码为检查点帧移,通过沿长模板链在预定义的位置退火不同长度的微钉。数据解码使用MspA纳米孔双工中断测序,该测序利用我们发现的一种新型解压缩标记和帧移诱导的电流特征来解析单个比特,同时依次解压缩串联模板-微短纤维双工。重要的是,双工结构可以通过支点介导的链位移实现高效的位特异性重写。这种方法为基于dna的硬盘驱动器提供了一个可扩展和通用的框架,具有扩展到内存计算,加密和动态生物分子传感的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing synthesis-free and enzyme-free rewritable DNA memory through frameshift encoding and nanopore duplex interruption decoding.

DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging "hard drive" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications. However, these approaches face challenges including complexity, low data density, enzymatic constraints, and reliance on costly instrumentation. Here, we introduce a DNA memory system based on frameshift encoding, inspired by viral ribosomal frameshifting, to enable rapid, cost-effective, and parallel data writing on a universal DNA template, without synthesis, enzymatic processing, or labeling. Information is encoded as checkpoint frameshifts by annealing microstaples of varying lengths at predefined sites along a long template strand. Data are decoded using MspA nanopore duplex interruption sequencing, which leverages a novel unzipping marker we discovered and frameshift-induced current signatures to resolve individual bits while sequentially unzipping tandem template-microstaple duplexes. Importantly, the duplex structure enables efficient, bit-specific rewriting through toehold-mediated strand displacement. This approach presents a scalable and versatile framework for DNA-based hard drives, with potential applications extending into in-memory computing, encryption, and dynamic biomolecular sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信