用于高效柔性钙钛矿太阳能电池的原子层沉积处理氧化锡低温光结晶。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-07-07 eCollection Date: 2025-09-01 DOI:10.1002/smsc.202500196
Dayeon Ko, Se Hun Joo, Sol Kim, In Soo Kim, Minwoo Park
{"title":"用于高效柔性钙钛矿太阳能电池的原子层沉积处理氧化锡低温光结晶。","authors":"Dayeon Ko, Se Hun Joo, Sol Kim, In Soo Kim, Minwoo Park","doi":"10.1002/smsc.202500196","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO<sub>2</sub> has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO<sub>2</sub> remain critical challenges for commercialization. In this study, a low-temperature and rapid crystallization process for amorphous SnO<sub>2</sub> is introduced, based on the use of high-power ultraviolet (UV) exposure (UV-SnO<sub>2</sub>) to achieve high-performance flexible PSCs. The generation of highly dense O<sub>3</sub>/OH radicals under UV exposure effectively ruptures the imperfect and weak bonds in the SnO<sub>2</sub> matrix, thereby facilitating the formation of nanocrystalline SnO<sub>2</sub>. This transformation enhances the conductivity and shifts the energy levels upward, promoting electron injection and transfer from the perovskite. Rigid and flexible devices exhibit remarkable power conversion efficiencies (PCEs) of 22.86 and 21.49%, respectively. Furthermore, the flexible device demonstrates an excellent mechanical durability and environmental stability, retaining 93.3% of its initial PCE after 1500 bending cycles (<i>r</i> = 12 mm) and 87.4% after 1000 h under 1 sun illumination. These results highlight the potential of photocrystallization for advancing flexible PSC technologies.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 9","pages":"2500196"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature Photocrystallization of Atomic Layer Deposition-Processed Tin Oxide for Highly Efficient and Flexible Perovskite Solar Cells.\",\"authors\":\"Dayeon Ko, Se Hun Joo, Sol Kim, In Soo Kim, Minwoo Park\",\"doi\":\"10.1002/smsc.202500196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO<sub>2</sub> has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO<sub>2</sub> remain critical challenges for commercialization. In this study, a low-temperature and rapid crystallization process for amorphous SnO<sub>2</sub> is introduced, based on the use of high-power ultraviolet (UV) exposure (UV-SnO<sub>2</sub>) to achieve high-performance flexible PSCs. The generation of highly dense O<sub>3</sub>/OH radicals under UV exposure effectively ruptures the imperfect and weak bonds in the SnO<sub>2</sub> matrix, thereby facilitating the formation of nanocrystalline SnO<sub>2</sub>. This transformation enhances the conductivity and shifts the energy levels upward, promoting electron injection and transfer from the perovskite. Rigid and flexible devices exhibit remarkable power conversion efficiencies (PCEs) of 22.86 and 21.49%, respectively. Furthermore, the flexible device demonstrates an excellent mechanical durability and environmental stability, retaining 93.3% of its initial PCE after 1500 bending cycles (<i>r</i> = 12 mm) and 87.4% after 1000 h under 1 sun illumination. These results highlight the potential of photocrystallization for advancing flexible PSC technologies.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 9\",\"pages\":\"2500196\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子层沉积(ALD)在制备大面积金属氧化物薄膜时具有良好的表面覆盖和均匀性。特别是,ald处理的SnO2在柔性钙钛矿太阳能电池(PSCs)和串联模块中显示出作为电子传输层的巨大潜力。然而,非晶SnO2的导电性和表面润湿性差仍然是商业化的关键挑战。在本研究中,介绍了一种基于高功率紫外线(UV)曝光(UV-SnO2)的非晶化SnO2低温快速结晶工艺,以实现高性能柔性psc。紫外线照射下生成的高密度O3/OH自由基有效地破坏了SnO2基体中不完善的弱键,从而促进了SnO2纳米晶的形成。这种转变增强了电导率并使能级向上移动,促进了电子从钙钛矿的注入和转移。刚性和柔性器件的功率转换效率(pce)分别为22.86%和21.49%。此外,柔性器件表现出优异的机械耐久性和环境稳定性,在1500次弯曲循环(r = 12 mm)后保持93.3%的初始PCE,在1个太阳照射1000小时后保持87.4%。这些结果突出了光结晶在推进柔性PSC技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-Temperature Photocrystallization of Atomic Layer Deposition-Processed Tin Oxide for Highly Efficient and Flexible Perovskite Solar Cells.

Low-Temperature Photocrystallization of Atomic Layer Deposition-Processed Tin Oxide for Highly Efficient and Flexible Perovskite Solar Cells.

Low-Temperature Photocrystallization of Atomic Layer Deposition-Processed Tin Oxide for Highly Efficient and Flexible Perovskite Solar Cells.

Low-Temperature Photocrystallization of Atomic Layer Deposition-Processed Tin Oxide for Highly Efficient and Flexible Perovskite Solar Cells.

Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO2 has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO2 remain critical challenges for commercialization. In this study, a low-temperature and rapid crystallization process for amorphous SnO2 is introduced, based on the use of high-power ultraviolet (UV) exposure (UV-SnO2) to achieve high-performance flexible PSCs. The generation of highly dense O3/OH radicals under UV exposure effectively ruptures the imperfect and weak bonds in the SnO2 matrix, thereby facilitating the formation of nanocrystalline SnO2. This transformation enhances the conductivity and shifts the energy levels upward, promoting electron injection and transfer from the perovskite. Rigid and flexible devices exhibit remarkable power conversion efficiencies (PCEs) of 22.86 and 21.49%, respectively. Furthermore, the flexible device demonstrates an excellent mechanical durability and environmental stability, retaining 93.3% of its initial PCE after 1500 bending cycles (r = 12 mm) and 87.4% after 1000 h under 1 sun illumination. These results highlight the potential of photocrystallization for advancing flexible PSC technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信