{"title":"人脐带间充质干细胞通过抑制骨关节炎早期nlrp3介导的滑膜炎症抑制骨关节炎的进展","authors":"Yu Li, Yu Ouyang, Ruibo Lang, Jing He, Shuo Zheng, Chunchun Ao, Yijia Jiang, Huan Xiao, Mao Li, Changyong Li, Dongcheng Wu","doi":"10.1155/sci/7558817","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is the leading joint disease that causes joint pain and disability. Despite increasing progress regarding the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) for OA, effective strategies for the treatment of OA using UC-MSCs have not yet been developed in clinical practice. Our present study has proven that the early stage in OA rats is the main development stage of nod-like receptor heat protein domain protein 3 (NLRP3)-mediated synovial inflammation. The middle stage in OA rats is the main development stage of chondrocyte apoptosis. The late stage in OA rats is the main development stage of synovial fibrosis. The treatment of UC-MSCs in the early and middle stages of OA significantly reduced cartilage damage in rats, and improved the pathological structure of the knee joint. In comparison, UC-MSCs effectively reduced chondrocyte apoptosis in the early and middle stages of OA rats, but they only effectively reduced NLRP3-mediated synovial inflammation in the early stages of OA rats. Experiments in vitro showed that UC-MSCs could inhibit NLRP3-mediated pyroptosis of rat primary synovial cells (Rat-scs). In conclusion, our findings suggest that UC-MSCs exert therapeutic effects on OA, at least in part, through inhibiting NLRP3-mediated synovial inflammation in the early stage of OA.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"7558817"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human Umbilical Cord Mesenchymal Stem Cells Inhibit the Progression of Osteoarthritis by Suppressing NLRP3-Mediated Synovial Inflammation in the Early Stages of the Disease.\",\"authors\":\"Yu Li, Yu Ouyang, Ruibo Lang, Jing He, Shuo Zheng, Chunchun Ao, Yijia Jiang, Huan Xiao, Mao Li, Changyong Li, Dongcheng Wu\",\"doi\":\"10.1155/sci/7558817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) is the leading joint disease that causes joint pain and disability. Despite increasing progress regarding the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) for OA, effective strategies for the treatment of OA using UC-MSCs have not yet been developed in clinical practice. Our present study has proven that the early stage in OA rats is the main development stage of nod-like receptor heat protein domain protein 3 (NLRP3)-mediated synovial inflammation. The middle stage in OA rats is the main development stage of chondrocyte apoptosis. The late stage in OA rats is the main development stage of synovial fibrosis. The treatment of UC-MSCs in the early and middle stages of OA significantly reduced cartilage damage in rats, and improved the pathological structure of the knee joint. In comparison, UC-MSCs effectively reduced chondrocyte apoptosis in the early and middle stages of OA rats, but they only effectively reduced NLRP3-mediated synovial inflammation in the early stages of OA rats. Experiments in vitro showed that UC-MSCs could inhibit NLRP3-mediated pyroptosis of rat primary synovial cells (Rat-scs). In conclusion, our findings suggest that UC-MSCs exert therapeutic effects on OA, at least in part, through inhibiting NLRP3-mediated synovial inflammation in the early stage of OA.</p>\",\"PeriodicalId\":21962,\"journal\":{\"name\":\"Stem Cells International\",\"volume\":\"2025 \",\"pages\":\"7558817\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/sci/7558817\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/sci/7558817","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Human Umbilical Cord Mesenchymal Stem Cells Inhibit the Progression of Osteoarthritis by Suppressing NLRP3-Mediated Synovial Inflammation in the Early Stages of the Disease.
Osteoarthritis (OA) is the leading joint disease that causes joint pain and disability. Despite increasing progress regarding the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) for OA, effective strategies for the treatment of OA using UC-MSCs have not yet been developed in clinical practice. Our present study has proven that the early stage in OA rats is the main development stage of nod-like receptor heat protein domain protein 3 (NLRP3)-mediated synovial inflammation. The middle stage in OA rats is the main development stage of chondrocyte apoptosis. The late stage in OA rats is the main development stage of synovial fibrosis. The treatment of UC-MSCs in the early and middle stages of OA significantly reduced cartilage damage in rats, and improved the pathological structure of the knee joint. In comparison, UC-MSCs effectively reduced chondrocyte apoptosis in the early and middle stages of OA rats, but they only effectively reduced NLRP3-mediated synovial inflammation in the early stages of OA rats. Experiments in vitro showed that UC-MSCs could inhibit NLRP3-mediated pyroptosis of rat primary synovial cells (Rat-scs). In conclusion, our findings suggest that UC-MSCs exert therapeutic effects on OA, at least in part, through inhibiting NLRP3-mediated synovial inflammation in the early stage of OA.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.